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Temporal correlations, universality, and multifractality in a spring-block model of earthquakes
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We characterize the complex temporal structure of the earthquake activity in a nonconservative
spring-block model of earthquakes. The temporal sequence of the occurrence of earthquakes is ob-
served to be multifractal. The clustering (temporal correlations) between earthquakes is character-
ized by a universal exponent. Those correlations disappear when the model becomes conservative.

PACS number(s): 05.40.+j, 05.45.+b

The internal organization of driven nonequilibrium sys-
tems has received a lot of attention recently. The sandpile
cellular automaton suggested by Bak, Tang, and Wiesen-
feld (BTW) is an example of such a system [1]. BTW
showed that it is representative of a certain class of con-
servative systems which drive themselves into a statistical-
ly stationary state, characterized by power-law spatial and
temporal distribution functions. Hence, the systems have
no intrinsic length or time scales and is in this sense criti-
cal. This type of behavior was named self-organized criti-
cality (SOC). : ST T

The seismic system is an example of a physical system
displaying power-law behavior. The power-law distribu-
tion for the earthquake intensity is interpreted as a signa-
ture of SOC: The movement of the tectonic plates drives
the system into a critical state [2].

We have recently proposed a continuous, nonconserva-
tive cellular automaton to describe the dynamics of a
driven spring-block system modeling earthquakes. This
nonconservative model displays robust SOC over most of
its parameter range. The critical exponents are not
universal, but depend on the degree of the nonconserva-
tion and on the boundary conditions as presented in detail
elsewhere [3]. ' .

The temporal behavior of this model is interesting be-
cause of several reasons. First, it is known that earth-
quakes display fractal clustering and correlated behavior
(see [4] and references therein). For shallow earthquakes,
the amount of clustering after large earthquakes is de-
scribed by a universal power law: the Omori law. We
have studied the temporal behavior of this dynamical
model and shown that it displays clustering for the larger
earthquakes. Second, since the model displays nonuniver-
sality for the critical parameters related to the earth-
quakes, such as the b value of the Gutenberg-Richter law,
the question is whether there exists any universality for
other critical exponents associated with temporal cluster-
ing. Finally, another interesting issue is the difference be-
tween the conservative model and the nonconservative
model. There is a discontinuous transition of the scaling
exponents when going from a conservative into a noncon-
servative system. However, there seems to be more funda-
mental changes in the temporal behavior, which are relat-
ed to the fact that SOC in a nonconservative model can
occur only if there are correlations between sites in
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avalanche clusters. The relative stability of those clusters
are responsible for the observed clustering.

In this paper we focus on the temporal set of earth-
quakes which are generated by the deterministic dynamics
of the spring-block model. We calculate the fractal di-
mension of the temporal sequence of earthquakes and find
that it displays a multifractal behavior. We calculate the
earthquake correlation function and show that it displays
a universal behavior for critical nonconservative systems.
The observed exponent is that reported in the Omori law.

_The total clustering associated with an earthquake de-

pends on the size of the earthquake, the system size, and
the amount of conservation. We characterize the scaling
of this function. A system-size-dependent cutoff time ap-
pears in the problem; above this time no correlation is
seen. We interpret those results as related to memory
effects which are essential if any criticality is to be seen in
such a system.

We first describe our model briefly. It can be derived
from a two-dimensional spring block model for earth-
quakes [3]. It is defined on a two-dimensional lattice by a
set of dynamical variables F;; that represent the local
force on a site (i,j), where 1 <i,j < L. The local forces

"“increase uniformly at a very slow rate until one site

reaches a threshold value Fy,. Then the forces on the un-
stable site and its nearest neighbors are updated according
to the simple relaxation rule

Fan— FantoaFi;,

(1)
F,-'j—+0.

This initiates an avalanche which either stops immediately
or propagates further in the system. The distribution
function of the size of the avalanches is a power-law dis-
tribution, where the cutoff scales with system size L, see
Ref. [3]. The parameter « is related to the spring con-
stants of the spring model. Notice that this system is non-
conservative if @ <0.25.

We can characterize the occurrence of each avalanche
by an occurrence time defined by the driving of the system
(the increase of strain is proportional to the elapsed time).

We discuss the earthquake temporal sequence & = {E,,},
where #; is the occurrence time of the earthquake and E is
its energy. Subsets e?g°={E,, € §|E=Eo} of this tem-
poral sequence are defined by assigning a minimal energy
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Eq for the earthquake under consideration, see Fig. 1.

We can ascribe a fractal dimension D(E,) to each sub-
set §g, (see [5] for a detailed definition). We measure the
number of intervals V(8,E) of size '8 needed to cover the
subset 8¢, and we find

N(8,Eq)~8 P& )

The fractal dimension D(E,) depends on the energy Eo.
Figure 2(a) is the result of counting intervals for a system
of size L=70 for ¢=0.20 for three different energies
Ep=690, 1608, and 2297. Notice that the interval deter-
mining the fractal dimension grows with the minimal en-
ergy Eo. When the size of the system is enlarged the in-
tervals belonging to the scaled avalanches grow like L7,
y=0.45-0.64.

Figure 2(b) displays the measured fractal dimension as
a function of the minimal energy Eo. The fractal dimen-
sion for small earthquakes is 1, which is the characteristic
of a random set. The results in Fig. 2 are given only for
energies where the interval is big enough to distinguish the
fractal exponent. A nontrivial fractal dimension appears
for larger earthquakes, indicating clustering.

In order to characterize the clustering more precisely
we define an earthquake clustering function in the follow-
ing way:

g =(n()), — 17, 3)

where (n(z)),, is the number of avalanches in the interval
(t;,2;+1) averaged over all ¢; in &, and 7 is the average
density of earthquakes. g(z) is simply related to an in-
tegral of a coarse-grained correlation function. For a
Poisson process g(¢) is identically zero. We define gg, ()
as g(¢) calculated for the subset Sk, i.€., We restrict our-
selves to the earthquakes with an energy release larger
than Eg. The excess number of earthquakes a time ¢ after
the avalanche is dg(t)/dr. It is also proportional to the
temporal point-point correlation function. For large
earthquakes this behavior was reported to be a 1/ behav-
ior.
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FIG. 1. A subsequence &s0 of earthquakes. An earthquake

with energy release E occurring at time # is represented by a §

function of height E.
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FIG. 2. (a) The number of intervals needed to cover the sub-
set §g, for Eo=690, 1608, and 2297. Notice the existence of a
minimal temporal distance between two successive earthquakes
of a given minimal energy Eo. The range determining the frac-
tal dimension grows with system size as well as with the minimal
energy Eo. (b) The fractal dimension D(Eo) of 8k, as a func-
tion of the minimal energy Eo.

To measure this correlation we generated large data
sets. Since we expect to see different clustering for large
and small earthquakes we measured the functions gg,(¢)
for the full range of energy. We give an example for the
results in Fig. 3. The basic form of gg,(¢) for the long-
term behavior is

g (1)~ {ln(z), t <tooll),

S(Eo,L), t>te(L)" 4)

The basic logarithmic dependence does not depend on a
in the nonconservative critical models. This behavior

seems to be universal. The exponent of the Omori law

will be the same for all nonconservative models, namely,
—1.0. The temporal correlations of earthquakes in this
model display universality even though the exponents for
the frequency-energy distribution display no universality.

The cutoff time t,(L) for the logarithmic behavior does
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FIG. 3. The earthquake clustering function geos(¢) for a sys-
tem of size L =70 with a =0.20.

not depend on the minimal energy of the set, but it de-
pends on « and the system size L. We present results for
f(Eo,L) for @a=0.20 and L=35 in Fig. 4. Below a
minimal energy too much fluctuations are seen to distin-
guish any correlation. Notice that the drop at larger ener-
gies is a result of the fact that they are near the cutoff.
We study the scaling of f(Eq,L) with the system size L.
The finite-size scaling hypothesis i

f(Eo,L)=L ~Pg(E/L") o ®

seems to work well with v=2.2, which is the scaling ex-
ponent reported in [3], and g= —1.6.

We further checked the dependence of the cutoff time
teoon a. For @a=0.25 the cutoff time is zero, as the model
becomes nonconservative a finite cutoff time appears. The
cutoff increases with decreasing @. For «=0.20 we
checked the dependence of 7¢, on system size L, and it
grows algebraically with L: tco'(L)~L°'7h Thus, for
@ <0.25 this cutoff time will diverge with system size.
Notice that the exponents describing the growth with sys-
tem size of the scaling regions of phenomena related to the
earthquake temporal sequence are small.

The conservative case is characterized by a complete
lack of temporal correlations. This is a result of the con-
servative nature of the model. The avalanches are very
big and multiple relaxations can occur at sites in the sys-
tem during an avalanche. Since the avalanches are con-
servative the interoccurrence time is much smaller. Both
effects drive the correlation time to zero. However, for
nonconservative models the situation is very different.
Since the model is nonconservative no multiple relaxations
will occur during. an avalanche. Moreover, such models
can become critical only if internal correlations are creat-
ed inside the lattice. Correlated clusters are created by
the avalanches. On the other hand, those clusters will be
modified by avalanches but not completely destroyed.
This is the reason for the increase in the cutoff time as
well as for the “memory” effects in the avalanches.

One should notice that the clustering observed in this
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FIG 4. (a) Simulation results for f(Eo,L) in a system with
@=0.20 and L =35. (b) Finite-size scaling plot of f(Eo,L) for
a=0.20 and L =35 (circles), 50 (squares), and 70 (triangles).
The scaling indices are v=2.2 and g= —1.6.

model is for time scales which are larger than the buildup
time of an earthquake. Thus the clustering we observe is
a long-term clustering. The exact relationship between
this and the Omori law for aftershocks (which might be
related to instabilities generated by a large earthquake) is
somewhat unclear. Similar calculations on earthquake
data were done by Kagan and Jackson [4]. However, it is
very hard to deduce any exact exponents from their data.

We have shown that nonconservative models for earth-
quakes display a complex multifractal behavior. The non-
conservation imply the existence of strong correlations be-
tween earthquakes. The exponents governing this cluster-
ing are universal for nonconservative critical systems.
Furthermore, the total clustering is related to the earth-
quake energy through the function f(Eo,L). The transi-
tion to a conservative model is associated with a zero
correlation time,

Other temporal measurements like point-point correla-
tion function and probability distribution for interoc-
currence times do not display universality.
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