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We introduce a new nonconservative self-organized critical model. This model is equivalent to a qua-
sistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. Our model
displays a robust power-law behavior. The exponent is not universal; rather it depends on the level of
conservation. A dynamical phase transition from localized to nonlocalized behavior is seen as the level of
conservation is increased. The model gives a good prediction of the Gutenberg-Richter law and an ex-

planation to the variances in the observed b values.

PACS numbers: 91.30.Px, 05.40.+j, 05.45.+b

The dynamics of earthquake faults may provide a
physical realization of the recently proposed idea of self-
organized criticality (SOC). Bak, Tang, and Wiesenfeld
(BTW) introduced the concept of self-organized criticali-
ty: Dynamical many-body systems reach a critical state
without the need to fine-tune the system parameters [1].
BTW showed that a certain class of systems drive them-
selves into a statistically stationary state characterized by
spatial and temporal correlation functions exhibiting
power-law behavior. Hence, the system has no intrinsic
length or time scale and is in this sense critical. The
study of the SOC systems has to a great extent been
based on simulations using cellular automaton models.
The majority of these simulations have been limited to
conservative models. It has been suggested that the
necessary (and sufficient) condition for SOC is indeed a
conservation law [2,3]. This seems to be the situation for
SOC models where perturbation is done locally as in the
original BTW model [4]. Recently, though, it was shown
that a special nonconservative model with a global pertur-
bation displays SOC [5].

Earthquakes are probably the most relevant paradigm
of self-organized criticality. In 1956 Gutenberg and
Richter realized that the rate of occurrence of earth-
quakes of magnitude M greater than m is given by the re-
lation

log;oN(M>m)=a—bm. 1)

This is the Gutenberg-Richter law [6]. The parameter b
has been recorded to have a wide range of values for
different faults. Findings of b from 0.80 to 1.06 for small
earthquakes and 1.23 to 1.54 for large earthquakes have
been reported [7].

The energy (seismic moment) E released during the
earthquake is believed to increase exponentially with the
earthquake magnitude,

logioE =c +dm , )

where the parameter d is 1 and 3 for small and large
earthquakes, respectively [8]. Thus the Gutenberg-
Richter law is transformed into a power law for the num-
ber of observed earthquakes with energy greater than E,

N(Eo> E)~E ~b/d=fg ~8 3)

Note that B is in the same range for both small and large
earthquakes, namely, 0.80-1.05.

Bak and Tang indicated that the simple conservative
SOC models can serve as a framework for explaining the
power-law behavior, giving a B value of 0.2 [9]. Similar
results are obtained for two-dimensional models in
[10,11]. Otsuka was the first to simulate a 2D version of
the Burridge-Knopoff model and he found B=0.8 [12].
Carlson and Langer proposed a 1D dynamical version of
the Burridge-Knopoff model [13-15]. A similar quasi-
static model in one dimension was investigated by Naka-
nishi [16,17].

We introduce a generalized, continuous, nonconserva-
tive cellular automaton model that displays SOC [18].
This model has several interesting aspects. First, it is
directly mapped into a two-dimensional version of the
famous Burridge-Knopoff spring-block model for earth-
quakes. Second, it displays a robust SOC behavior over a
very wide range of conservation levels. Third, we find
that the level of conservation has an impact on the power
laws obtained. We see a transition from localized behav-
ior into nonlocalized behavior as the level of conservation
is increased. Finally, the dependence of the power laws
on the conservation allows us to explain the wide vari-
ances in the Gutenberg-Richter law as a result of the
variances of the elastic parameters.

The Burridge-Knopoff spring-block model is a two-
dimensional dynamical system of blocks interconnected
by springs. Each block is connected to the four nearest
neighbors. Additionally, each block is connected to a sin-
gle rigid driving plate by another set of springs as well as
connected frictionally to a fixed rigid plate [see Fig.
1(a)]. The blocks are driven by the relative movement of
the two rigid plates. When the force on one of the blocks
is larger than some threshold value Fy (the maximal
static friction), the block slips. We assume that the mov-
ing block will slip to the zero-force position. This as-
sumption is not essential for the behavior of the model as
will become evident later on. The slip of one block will
redefine the forces on its nearest neighbors. This can re-
sult in further slips and a chain reaction can evolve.

For the purpose of mapping the spring-block model
into a cellular automaton model we define an L XL array
of blocks by (i,j), where i,j are integers restricted to the
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FIG. 1. The geometry of the spring-block model. (a) The
two-dimensional system of blocks connected by springs. The
strain of the blocks increases uniformly as a response to the rel-
ative movement of the rigid plates. (b) A detailed picture of a
given block (i,j) and its surroundings.

interval between 1 and L. The displacement of each
block from its relaxed position on the lattice is defined as
dx; j. The total force exerted by the springs on a given
block (i,/) is expressed by

F,"j =K|[2dx,-‘j —dx,'—-|‘_,' —dx,-+|,j]
+K2[2dx,',j—dx,"j—|_dxi,j+I]+Kdei.js (4)

where K|, K>, and K; denote the elastic constants [see
Fig. 1(b)].

When the two rigid plates move relative to each other
the total force on each block increases uniformly (with a
rate proportional to K, V, where V is the relative velocity
between the two rigid plates) until one site reaches the
threshold value and the process of relaxation begins (an
earthquake is triggered). It can easily be shown that the
redistribution of strain after a local slip at the position
(i,)) is given by the relation

Fixj— Fi+,j+6Fi+,;,
Fijx1— F; j+\+3F; j+1, )

F;j—0,

where the increases in the nearest-neighboring forces are

K,
i .=—Fi L= F iy
SFitv = o vk, 4k, [ Fi ©
6
K,
OFi it = S ok, vk, i ek

For simplicity we denote the elastic ratios by a; and a5,
respectively. Notice that this relaxation rule is very simi-
lar to the well-known BTW model. However, when
K > 0 the redistribution of the force is nonconservative.
Thus, the well-established spring-block model, used to de-
scribe earthquakes, is nonconservative in nature. If
K=K, (a1#a;) this model is also anisotropic. We will
describe the phase diagram for this case in a forthcoming
paper [19]. Furthermore, if a;=0, a;=0, we have a
one-dimensional version of the spring-block model.
Nakanishi [16,17] studied this model with the relaxation
rule for the slipping block i as a function of the excess
force F;—Fy, that is, F;— ¢(F;—Fy). In our model
#=0 and the one-dimensional nonconservative systems
are not critical.

In this paper we restrict ourselves to the isotropic case,
Ki1=K; (aj=ay=a). The boundary condition of the
model is rigid, implying that F =0 on the boundary. The
time interval between earthquakes is much larger than
the actual duration of an earthquake. Thus, the mapping
of the spring-block model into a continuous, nonconserva-
tive cellular automaton modeling earthquakes is de-
scribed by the following algorithm.

(1) Initialize all sites to a random value between 0 and
F(h.

(2) If any F; j = Fy, then redistribute the force on F; ;
to its neighbors according to the rule

Fpn— Fn,n+aFi,j 5
@))
F,-‘j—>0,

where F, , are the strains for the four-nearest neighbors.
An earthquake is evolving.

(3) Repeat step 2 until the earthquake is fully evolved.

(4) Locate the block with the largest strain, Fumax. Add
Fh — Fmax to all sites (global perturbation) and return to
step 2.

We measure the probability distribution of the size
(the total number of relaxations) of the earthquakes,
which is proportional to the energy released during an
earthquake.

There are several differences between our model and
the BTW model.

(i) The strain on the critical site is set to zero when re-
laxed. (ii) The redistribution of strain to the neighbors is
proportional to the strain in the relaxing site [20]. (ii)
The relaxation is not conservative. It will be conservative
only when K; =0. If K; >0, the model will be noncon-
servative. In the context of the spring-block model,
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K1 > 0; otherwise no driving force is possible. If we as-
sume that all elastic constants are on the same scale
(K1 =K,=K_) then a =0.20.

The continuous, nonconservative cellular automaton
model exhibits SOC behavior for a wide range of a
values. The exponent B depends on a. The dependence is
shown in Figs. 2(a) and 2(b). To verify the criticality of
the model we study the effect of increasing the system
size L. We observe that for a =const the exponent stays
the same, while the cutoff in the energy distribution
scales with system size. We give an example of this be-
havior in Fig. 3 which shows the results of simulations
with @ =0.20 for L=15, 25, 35, and 50, giving B=0.91.
By examining the scaling of the cutoff in the energy dis-
tribution as a function of the system size for @ =0.20 we
find that the cutoff scales with L>2? [19). In the original
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FIG. 2. (a) Simulation results for the probability density of
having an earthquake of energy E as a function of E for a
35%35 system. The curves correspond to a=0.25, 0.20, 0.15,
and 0.10. The slope of the curves becomes steeper as the a
value is decreased. (b) The power-law exponent B as a function
of the elastic parameter a. The level of conservation is 4a. No-
tice the sudden change of the B value around a=0.07. Below
a=0.05 there is a transition to exponential decay. The arrows
indicate the actual measured B values for earthquakes [7].
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BTW model the cutoff scales with the square of the sys-
tem size L. This verifies the criticality of the model as
well as the absence of any characteristic length scale as-
sociated with nonconservation. For the lower values of a
(@ =<0.10) it is difficult to pursue this scaling since the
large values of B in this region make it very hard to ob-
tain good statistics for the large events.

It is clear that if @ =0 the movement of the blocks will
become completely uncorrelated due to the lack of in-
teraction. Therefore, we expect to see a transition to a lo-
calized behavior, characterized by a change from a
power-law dependence to an exponential decay. This
indeed occurs in this model for @ = 0.05. Notice that for
this value only 20% of the value at the critical site is
redistributed.

There is another transition in the slope of the critical
exponent when B reaches the value of 2.0 (a=0.07).
For this value the variance of the avalanches becomes
well defined.

Since other algorithms seem to be very dependent on
external noise [5,11] we checked the effect of noise on our
model. We introduced noise with zero mean and with a
variance up to 0.25F;, in each relaxing site for the case of
a=0.20. This noise had no effect on the exponent and
cutoff.

In conclusion we have shown that a continuous, non-
conservative model can have a very robust SOC behavior.
This is not in accord with the predictions based on
differential equations [2,3]. Previous published models
[9-11] neglect the presence of the overlying leaf spring,
thus assuming K; =0. This implies that their models are
conservative.

The model has a very wide range of exponents, between
0.22 for the conservative case and 2.5 for the transition
point. In addition, if the elastic constants are comparable
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FIG. 3. The probability density of having an earthquake of
energy E as a function of E for a=0.20. The different curves
refer to different system sizes L =15, 25, 35, and 50. The cutoff
in energy distribution scales with L %7,
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(K, = K== K) then the characteristic value is a = 0.20.
Therefore, we expect to see the empirically observed B
values in the neighborhood of a=0.20. The measured
range of B values for earthquakes [7] are indicated by the
arrows in Fig. 2(b). They are indeed in this region.

Our model is extremely robust even under large noise.
On the other hand, the model does not rely on the intro-
duction of noise as is the case in Refs. [5,11]. This is also
contradictory to previous models for self-organized criti-
cality based on differential equations [2,3]. Our model
includes the basic feature of the spring-block model: the
existence of an enormous phase space of metastable
states. The metastable states lose their stability only if
they exceed the threshold value. The models based on
driven diffusion equations do not share this feature. We
believe this to be the fundamental property modeling
earthquakes.

Another interesting feature of our model is the lack of
universality. Changing the value of a will alter the ex-
ponent but still keep the system critical.

While this model is obviously highly simplified we be-
lieve it provides a reasonable resemblance of the actual
dynamical process associated with earthquake faults.
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FIG. 1. The geometry of the spring-block model. (a) The
two-dimensional system of blocks connected by springs. The
strain of the blocks increases uniformly as a response to the rel-
ative movement of the rigid plates. (b) A detailed picture of a
given block (i,j) and its surroundings.



