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Deterministic 1/f Noise in Nonconservative Models of Self-Organized Criticality
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Generic, deterministic, nonconservative models displaying self-organized criticality are shown to ex-
hibit 1/f noise. The exponent of the power spectrum depends on the level of conservation.

PACS numbers: 05.40.+j, 05.45.+b

One of the great mysteries of physics is the 1/f noise
observed in signals from sources ranging from the light of
quasars to the flow of the river Nile and the current flow-
ing through a resistor [1,2]. The noise is called “1/f”
noise despite the fact that the exponent of the power spec-
trum is rarely 1, but varies from system to system, and is
typically in the range of 0.6 to 1.6. Remarkably, the
power law is obeyed over several decades, spanning time
scales where one might expect the physics to differ sig-
nificantly. Using a very simple dynamical model to cap-
ture the essence of the underlying mechanism, we argue
and demonstrate numerically that 1/f noise is a deter-
ministic self-organized critical phenomenon emerging
naturally in interactive dissipative dynamical systems
with many degrees of freedom.

A few years ago, Bak, Tang, and Wiesenfeld (BTW)
[3] discovered that extended dynamical many-body sys-
tems self-organize into a critical state. The idea comple-
ments the concept of “chaos” wherein simple systems,
with a small number of degrees of freedom, can display
quite complex behavior. The critical state is character-
ized by avalanches (activity) with power-law spatial and
temporal distribution functions limited only by the size of
the system. The original models were driven by white
noise, but later it was shown that deterministic models
exhibit the same behavior, that is, the criticality is not
caused by but, on the contrary, is robust with respect to
noise. Thus, a mechanism for establishing coherence over
all time scales was provided.

However, the spatiotemporal scaling in the self-
organized critical state does not necessarily manifest it-
self in nontrivial exponents of the power spectrum. Jen-
sen, Christensen, and Fogedby [4] and later Kertész and
Kiss [5] showed that the power spectrum of the activity
was in fact 1/f?, ie., the spectrum of a random walk.
The proper relationship between the joint probability den-
sity P(S=s, T=t) of having an avalanche of size s and
lifetime ¢ and the power spectrum S{(f) of linearly super-
imposed avalanches was worked out by Jensen, Christen-
sen, and Fogedby [4(a)] and later generalized by them
[4(b)]. Introducing the weighted lifetime distribution

AR =X s*P(S=s, T=1), a)

and assuming that A(z) exhibits a scaling behavior
A@)~t, 0<ti<t=<1;<0o, @

and is negligible outside this interval, they showed
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1, u+1<0,
S~ f*("“), 0<u+1< —0cw, (3)

f‘am, ﬂ+1> Qe ,

for the scaling of the power spectrum in the intermediate
frequency regime 1/2xt, << f <K 1/2xnt|. Here, a is an ex-
ponent characterizing the shape of the avalanches and it
can be proven to be < —2. For f— 0 the power spec-
trum becomes white, since a linearly superimposed signal
cannot contain temporal correlations beyond the longest
possible lifetime of an avalanche. Thus, in order to get
nontrivial exponents, g+1 must be between 0 and 2,
whereas in the BTW model g =3.1, 2.77, 2.69, and 2.56
in dimension 2, 3, 4, and 5, respectively. Notice that the
lower frequency cutoff scales inverse proportionally with
the upper temporal cutoff ¢, of the weighted lifetime dis-
tribution.

In the BTW model the local dynamical variable was
conserved during the relaxations, whereas realistic models
of natural phenomena, such as earthquakes, do not typi-
cally have any inherent conservation law. For some time
it was believed that the introduction of any degree of non-
conservation into a BTW-type model would necessarily
lead to a finite correlation length [6]. Recently, however,
Feder and Feder [7] introduced a two-dimensional, non-
conservative model displaying criticality. Shortly after-
wards Olami, Feder, and Christensen [8] discovered a
class of deterministic models, related to spring-block
models of earthquakes, which exhibit self-organized criti-
cal behavior with a conservation level down to 20%, and
nonuniversal exponents depending on the level of conser-
vation.

The simplicity and robustness of those models suggest
that they can be viewed as generic “Ising” models of dis-
sipative many-body systems; hence, we concentrate our
effort on those models: A set of dynamical variables F; ;,
representing the local force (strain) at site (i,j), is
defined on a two-dimensional lattice 1 <<i, j=<L. The
values of F;; are increased uniformly at an essentially
infinitely slow rate until somewhere the force exceeds a
critical value Fy,. Then the force on the unstable site,
F;j, and the values of the force at its nearest neighbors
Fun, are updated according to the simple relaxation rule

Foo— FuntaFij, Fi;j—0. 4)

This initiates an avalanche which lasts for ¢ time units
(a unit time step is defined as one simultaneous update of
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the whole lattice) and involves s relaxations. As F keeps
increasing, there will be more avalanches triggered by in-
stability on other sites. In the beginning, correlations are
short range in time and space. During a long transient
period, depending on the size of the system and «, the
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FIG. 1. Distribution of weighted duration of avalanches in a
system of size L=100. (a) ¢=0.10, (b) a=0.15, and (c)
@=0.20. The measured exponents u are —0.40, 0.61, and 0.92,
respectively.
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correlations grow, until saturating at a value limited by
and scaling with the size of the system, indicative of the
slow self-organizing process leading to the stationary crit-
ical state. Notice that the level of conservation is given
by 4a.

The difference from the deterministic, continuous ver-
sion of the original BTW model may seem subtle, but
nevertheless has striking consequences. In the BTW
model the decrease in the value of the relaxing site was a
fixed amount (say 4) and the transfer to the neighbors
was independent of the previous state of the system. This
rigid way of transferring force did not allow the system to
self-organize except for the special case of a conservative
system. In the model given above the relaxing amount
and the transfer to the neighbors depend on the state of
the system. This appears to be a much more general situ-
ation. The fact that one has a handle on the exponents,
through the level of conservation, suggests that a power
spectrum with nonuniversal nontrivial exponents may
emerge, as observed in nature.

We now focus on the weighted lifetime distribution for
the avalanches defined in Eq. (1) and its relation to the
power spectrum of linearly superimposed signals. This is
to mimic the total activity in a very large, slowly driven
system_in which we can neglect the interference between
different avalanches.

Figure 1 shows the weighted lifetime distribution A(z)
for various values of a. Indeed, they obey power laws
with the exponent p depending on the dissipation. The
values of p are in the range where nontrivial exponents
for the power spectra are expected.

In order to measure directly the power spectrum of
linearly superimposed avalanches we generate realiza-
tions of the number of relaxations per unit time step j(z)
by repeating the following procedure: (1) Set j(r)=0
for all 7. (2) Perturb the system until an avalanche is ac-
tivated. (3) Choose a starting time 7 at random, and in-
crease j{ro+7) by the activity (number of relaxations
per unit time step), for ¢ =1, ...,t, where ¢ is the life-
time of the avalanche. (4) Go to (2).

The assumption of no interference between different

TABLE I. The measured exponents u+1 and ¢ for the
weighted lifetime distribution and power spectrum, respectively.
The exponents are, within numerical accuracy, consistent with
Eq. (3). For 0.0225 < @=0.25 it was not possible to identify
any scaling region. For comparison we also list the critical ex-
ponents for the original two-dimensional BTW model.

Model u+1 12
a=0.10 0.60+0.10 0.50£0.10
a=0.125 1.20+0.10 1.18 £0.05
a=0.15 1.61£0.10 1.56 +0.05
a=0.175 1.80£0.10 1.76 £0.05
a=0.20 1.924+0.10 1.80 £0.05
a=0.225 2.24+0.10 1.92+0.05
2D BTW 3.10Xx0.10 2.00£0.05




VOLUME 68, NUMBER 16

PHYSICAL REVIEW LETTERS

20 APRIL 1992

1072 — — -

= a3
w10

10-4 e | P . L
0.001 0.01 0.1 1

Frequency f

10°

107!

=402
=10

1078

s

0.01 0.1 1
Frequency f

107 et
0.001

10!

() 1

it

o

—4 . NP |

0.01 0.1 i
Frequency f

0.001 s aa A | \l/ .
0.01 0.1 1
Frequency f

FIG. 2. The power spectrum of randomly superimposed avalanches for the same « values as in Fig. 1. The arrow indicates the
upper frequency cutoff 1/2x for the scaling region. The exponents ¢ of the power spectrum are (a) ¢=0.50, (b) ¢=1.56, and (c)
¢=1.80. Within numerical accuracy, those values are consistent with the values of u. (d) The power spectrum of a system of size
L =250 driven continuously at a rate p =0.001 for ¢ =0.20. The straight line has a slope of —1.93.

avalanches was essential for the derivation of Eq. (3).
Time sequences j(z) generated according to the algo-
rithm above, will, of course, fulfill this requirement.

For a given realization j(r) we make the Fourier
transform j(f), and define the power spectrum

S =j(NI?, (5)

which is a strongly fluctuating function of the frequency
f. We average over many different realizations (up to
1000 realizations) to reduce the variance in the power
spectrum, which for one single realization is a 100% stan-
dard deviation. Figures 2(a)-2(c) display the resulting

power spectra measured by randomly superimposing the -

avalanches in a system of size L =100. We recall that
the frequency region under consideration is 1/2xf, <K f
< 1/2m, since ;=1 by definition. The slopes of the
straight lines are indeed in agreement with the predicted
values obtained from substituting the values from Fig. 1

into Eq. (3). Table I lists all our simulation results. The
exponents are roughly in the regime observed experimen-
tally. Note the change in the sign of the slope u is relat-
ed to a change of the power-law exponent from values
less than unity to values greater than unity.

Alternatively, the time sequence j(z) can be generated
by a direct measurement of the activity in a slowly driven
system of considerable size. Figure 2(d) presents the
power spectrum of a system of size L =250 driven with a
finite rate p =0.001 for @ =0.20. The long-term correla-
tions ignored by the random superposition method do not
affect the shorter time scales of interest here. Indeed, the
power spectrum seems to be in even better agreement
with the exponent extracted from the exponent u of the
weighted lifetime distribution.

Finally, in order to verify that the interval in which the
power spectrum displays 1/f noise scales with system size,
we generated the power spectrum for various system
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FIG. 3. The power spectrum for systems with «=0.20 but
different system sizes, L =45,70,100. The lower frequency
cutoff scales with system size, while the upper frequency cutoff
is a constant. The exponent of the power spectrum seems to
change slightly with system size.

sizes, L =45,70,100, for a =0.20. The power spectrum is
shown in Fig. 3. We observe that the lower frequency
cutoff scales with system size L. This is a unique finger-
print of a many-body phenomenon. Hence, with this
characteristic in mind, we urge that experiments be per-
formed on systems of varying size in order to check the
assertion that the 1/f noise is a critical dynamical many-
body effect. -
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