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We investigate extremal dynamics on random networks. In the quenched case, after a transient time
the dynamics is localized in the largest cluster. The activity in the largest cluster is nonergodic, with hot
spots of activity typically centered around nodes with a high coordination number. The nonergodicity
of the activity opens for models of evolving networks, which can self-organize into fractal geometries.
[S0031-9007(98)07126-9]

PACS numbers: 64.60.Lx, 05.40.+j, 05.50.+q, 87.10.+e

The arrangement of units which interacts with one an- In order to fix ideas we consider a system modeling
other is of general concern in a variety of fields, ranginga biological ecology, but one should keep in mind that
from economy to biology and physics. One may thinkthe results may as well concern other types of networks.
of networks of interdependent technologies, interactingrhe initial configuration of the ecology consists of
macromolecules [1], genes within a biological organismspecies, each of which has neighbors, where; is a
[2], or species in a coevolutionary framework [3—7], to random number with a Poisson distribution with méan
mention some examples. Such networks may be highlfhis is done by randomly selecting(z)/2 bonds among
connected, or may consist of many isolated units or smakthe N(N — 1)/2 possible ones. In this way we restrict
groups, or lie in an intermediate case, forming a marginourselves to a symmetric neighbor relation: if a species
ally connected network. It seems particularly interesting ta is a neighbor of anothef, thenj is also a neighbor
discuss marginally connected networks, because they repf i. The N species in the ecology separate, in general,
resent a regime where the dynamics on the network is connto noninteracting subecologies of sizes ..., n,, with
ducting with a minimum overall activity [2]. di—iny = N. In the small(z) limit, there are many

In this paper we first investigate critical quenchedisolated clustersng large) which are small in sizeif <«
random networks. However, it is not a simple task toN V k). In the large(z) limit there are only a few isolated
obtain such a marginally connected network from a staticlusters g small) and the largest cluster contains most of
approach, as this demands fine-tuning. Next, we considéhe species.
extremal dynamics on random networks, as defined in We have measured the strength= max{n;/N} of
the Bak-Sneppen (BS) model [5], to represent the manshe largest cluster as a function df). Taking an
diverse forms in which complex systems may interactensemble average, we find, as shown in Fig. 1(a), a phase
Finally, we develop a dynamic of networks, which allowstransition az). = 1.00 = 0.01, above whichP becomes
them to evolve into configurations of critical connectivity. finite. Indeed, we find thaP « ((z) — (z).)? with 8 =

When studying networks of interacting units, the usuall.00 = 0.05; see Fig. 1(b). The phase transition can also
approach is to arrange the units in some fixed configube followed in the inset of Fig. 1(a), where one observes
ration (e.g., in aD-dimensional hypercubic lattice) and that the average connectivity in the largest clugt®f gest
let them interact with their neighborhood, which is nor-remains fairly constant whefx) is close to the critical
mally defined as consisting of the nearest units. In goint. The connectivity of the largest cluster at the
realistic network, it is very unlikely that the neighbor- critical point(z)jareesc = 1.9998 %= 0.0005 corresponds to
hood can be mapped into a regulBrdimensional lat- the demand that in a critical branching process on the
tice. It seems more natural to select the neighborhood dfluster, the process should be marginally transmitted
a unit freely and not to constrain it to any regular lattice.through each node. At the critical point the distribution
This will be the general situation whenever the interactiorof subecologies is a power laR(n) < n~™ with 7, =
among units under consideration is not determined by th&.50 * 0.10 as displayed in Fig. 1(c). This suggests that
underlying space. Moreover, to keep a fixed configurathe phase transition is in the universality class of mean-
tion in such a situation is also a very strong assumpfield percolation, wherg?ec = | andri = = 5/2[8].
tion, which may be unphysical in many cases. Thus it We now study evolution on a quenched random net-
is much more satisfying to relax these two constraintsvork defined by the extremal dynamics of the BS model
and let the interaction between units be defined on a rarf5]. In this model one views an ecology as a dynami-
dom network which, eventually, is allowed to evolve by cal system which consists of many species that interact
itself. locally with each other. Each speciés=1,...,N is
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assigned a fitness parametgy, which reflects its over-

all survival capability. These parameters are initially uni-
formly distributed betweer® and 1, and the system is
allowed to evolve as follows. At each step, the species
imin With minimal fitness is located, and it undergoes a
mutation: The procedure consists of reassigning a ran-
dom value for the fitness af,;,. This mutation affects
the fitnesses of all the species with which it interacts (its
neighborhood), so they are also assigned new random fit-
nesses. The scenario emerging from the BS model is a
self-organized critical steady state: regardless of the initial
conditions, the fitness distribution of the ecology evolves
into a steplike function characterized by a threshold fithness
B.. Furthermore, in the statistically stationary state vari-
ous physical quantities are power-law distributed. In par-
ticular, the sizes of an avalanche with threshoRl < B..,
defined as the number of successively located minimum-
site fithesse®; ., such thatalB; < B. WhenB — B,

the avalanche size distribution is a power lafg(s) o«

s~ 7. In standard studies on regular lattices it is found
that the power-law avalanche size distribution is robust
and depends only on the dimensionality of the lattice. The
first- and all-return times of activity to a given species
are also characteristic quantities which are power-law dis-
tributed [6]. Other studies of the BS dynamics under vari-
ousregular geometriesan be found in [9-13].

When we let the species on a quenchaadom network
evolve according to the BS rules, we observe that, after
a transient, changes typically occur only in the largest
subecology. In fact, the minimal fithess remaining in a
cluster as a function of its size; can be obtained by
noting that the gapG(r) = maX/<,[Bmi(t')] increases
fastest for small clusters [6]. Therefore the minimal
fithess in smaller clusters becomes higher than for large
clusters, and, thus, in the long time limit, only the largest
cluster will be visited. However, some exceptions might
exist, for example, if a small cluster has a very high
coordination number compared to that of the largest
cluster.

FIG. 1. (a) The strength? = max{n;/N} of the largest
cluster as a function of the mean coordination numder
There is a phase transition@b, = 1.00 = 0.01 above which

a macroscopic number of the species will be interconnected.
The inset shows how the average coordination number in
the largest clustefz)i.eese iNCreases with(z) and reaches a
value 0f1.9998 = 0.0005 at(z).. Both curves were obtained
with an ensemble average ovéd0 systems withN = 10°.

(b) The strengthP of the largest cluster increases with the
distance from the critical coordination numbér). like a
power lawP = ((z) — (z).)? where8 = 1.00 * 0.05. The
displayed dashed line has a slgpe= 1. The data represent
an ensemble average oved0 systems withV = 10%. The
excess ofP when(z) — (z). = 1072 is an effect of using a
finite N. (c) The distribution of cluster sizeB(n) at (z).
displayed in a log-log plot. The data represent an average
over 1000 systems of size&/ = 10°. The dashed line has a
slope of—7, = —2.5.
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We have simulated the evolution on a quenched random We have also studied the model with) > (z).. Of
network with neighbor numbers selected, as described course,B. depends onz). Increasing the connectivity
above, so as to have a mean = (z).. The results are lowers the threshold fitnesB. [5]. With increasing(z)
collected after the transient at the statistically stationaryve observe a crossover to the mean-field value= 3/2,
state. The avalanche size distribution is displayed by thevhich is also seen in other versions of the BS model
circles in Fig. 2(a). We find that aB approache®. = [9,12,13]. This is illustrated in Fig. 2(a), where the
0.525 + 0.005 from below, the avalanche sizes becomeavalanche size distribution is given fa@) = 2 with B, =
power-law distributed. The exponent that emerges whef.3446 and (z) = 3 with B. = 0.2575. The different
(z) = (2)c is Ty = 1.20 = 0.05. behavior can be explained by looking at the geometry

of the network. Starting from a given site, we have
measured the total number of units(€) within £ bonds
LA from a given site. Withz) = (z). we find M(€) « ¢Pr,
100 ey @) - with D, = 1.88 = 0.05. Thus the dimensionality of the
Ny largest cluster in this critical quenched random network
10° | “@x@(\ | is indeed close t@ which might explain why the critical
e, exponents are close to the 2D exponents. However, when
(z) > (2)e, M(£) increases exponentially and mean-field
N behavior is to be expected.
B g Finally we have measured, both at and abe, how
107 b o<z>=1 LN 1 often different nodes on the largest cluster are visited as
0<z>=2 o e a function of the coordination number. In contrast to the
- s<z>=3 AN BS dynamics on cubic lattices (where= 2D, indepen-
w0t 1 dent oni), the BS dynamics on quenched random networks
is strongly nonergodic. Thus, although the first- and all-
10" ‘ ‘ ‘ ‘ ‘ ‘ I return-time exponents for all sites are the same, the overall
frequency of visits to different species on the largest cluster
varies considerably, as seen in Fig. 2(b). There are “hot
60 spots” on the cluster, which are visited much more fre-
(b) quently than the rest of the network. Furthermore, these
] hot spots are associated with species with the highest num-
ber of neighbors, which makes them the most vulnerable
ones. The tendency of the BS dynamics to select highly
connected regions as the most active ones suggests that ex-
tremal dynamics may be an efficient way to dynamically
M 7 evolve networks to a statistically stationary state of finite
connectivity (i.e..>0 and of the order of-1 independent
. of the system siz&/).
If modifications in the network are associated to up-
W dates in the BS model, then the network should undergo
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changes especially at the hot spots. To illustrate this point

we have considered an updating algorithm where, with a
0 1 2 3 4 5 6 7 8 9 10 11 12 13 small probabilityp, one bond is removed (added) from the
z active site when its number of neighbafsexceeds (is less
FIG. 2. (a) The avalanche-size distributioR(s) for the than) the local average connectivity. Within ac:_o&_eyolutlon-
BS model on a quenched random network with a critical@ry framework, this would represent the possibility that a
coordination numbexz) = 1 with B, = 0.525 (circles) and  species might look for isolation from predators, or search
above(z) = 2 with B. = 0.3446 (squares), andz) =3 with  for additional food sources, by approaching the average
B. = 0.2575 (triangles). = After a transient of0" mutations,  connectivity of its immediate environment. Figure 3 dis-
the data were obtained by averaging owéf mutations in a I the ti Iuti fth dinati
system of the size oV = 2!'7. The dashed lines correspond plays the ime evolution ot the average coordination num-
to power laws with exponents, = 1.2 andr, = 1.5; i.e,, one  ber in the largest cluster as a function,ef Independent
observes different scalings for critical and overcritical networks,of the initial connectivity of the network, the system self-
LespeCtlveW-f (b) Th? avteragef _rgumberdlof ttlmes thgt a 1S_I;Q)rganizes into a network with average connectivity in the
ecomes active as a tunction of Its coordination numboer. — i i H H
graphs refer to a criticak) = 1 (black) and super criticdk) = (E‘Srgeit CI}JZS;[eK\Z/&largestt thzltatlrr:d clustertzlze dls_trlbuttlon K
2 (light grey) and(z) = 3 (dark grey) networks, respectively. (n) < n==. We note tha 1€ present dynamic networ
In each case, simulations were performed in a network of thénodel generates networks with a connectivity distribution
size of N = 217, somewhat narrower than a Poissonian. Accordingly, the
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ral solution to memory storage in early life development,

it has been shown that ecological feedback circuits are
unstable towards evolution of parasitic behaviors [15].

Thus ecological networks driven by population dynamics
and occasional mutations typically break down into a few
dominant species, as can be easily tested numerically.

It has been suggested [15] that some sort of compart-
mentalization is a prerequisite to obtain some minimal
level of complexity. Parametrizing evolution in terms of
fithess parameters, instead of population sizes, emphasizes
compartmentalization and other natural barriers. We think
that modeling ecological networks evolution constrained
by barrier dynamics may be a way to add this mini-
mal level of structure into the dynamical evolution of the
system.
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