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We investigate extremal dynamics on random networks. In the quenched case, after a transient
the dynamics is localized in the largest cluster. The activity in the largest cluster is nonergodic, with
spots of activity typically centered around nodes with a high coordination number. The nonergodi
of the activity opens for models of evolving networks, which can self-organize into fractal geometri
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The arrangement of units which interacts with one an
other is of general concern in a variety of fields, rangin
from economy to biology and physics. One may think
of networks of interdependent technologies, interactin
macromolecules [1], genes within a biological organism
[2], or species in a coevolutionary framework [3–7], to
mention some examples. Such networks may be high
connected, or may consist of many isolated units or sma
groups, or lie in an intermediate case, forming a margin
ally connected network. It seems particularly interesting t
discuss marginally connected networks, because they re
resent a regime where the dynamics on the network is co
ducting with a minimum overall activity [2].

In this paper we first investigate critical quenched
random networks. However, it is not a simple task t
obtain such a marginally connected network from a stat
approach, as this demands fine-tuning. Next, we consid
extremal dynamics on random networks, as defined
the Bak-Sneppen (BS) model [5], to represent the man
diverse forms in which complex systems may interac
Finally, we develop a dynamic of networks, which allows
them to evolve into configurations of critical connectivity.

When studying networks of interacting units, the usua
approach is to arrange the units in some fixed config
ration (e.g., in aD-dimensional hypercubic lattice) and
let them interact with their neighborhood, which is nor
mally defined as consisting of the nearest units. In
realistic network, it is very unlikely that the neighbor-
hood can be mapped into a regularD-dimensional lat-
tice. It seems more natural to select the neighborhood
a unit freely and not to constrain it to any regular lattice
This will be the general situation whenever the interactio
among units under consideration is not determined by th
underlying space. Moreover, to keep a fixed configura
tion in such a situation is also a very strong assump
tion, which may be unphysical in many cases. Thus
is much more satisfying to relax these two constrain
and let the interaction between units be defined on a ra
dom network which, eventually, is allowed to evolve by
itself.
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In order to fix ideas we consider a system modelin
a biological ecology, but one should keep in mind tha
the results may as well concern other types of network
The initial configuration of the ecology consists ofN
species, each of which haszi neighbors, wherezi is a
random number with a Poisson distribution with meankzl.
This is done by randomly selectingNkzly2 bonds among
the NsN 2 1dy2 possible ones. In this way we restrict
ourselves to a symmetric neighbor relation: if a specie
i is a neighbor of anotherj, then j is also a neighbor
of i. The N species in the ecology separate, in genera
into noninteracting subecologies of sizesn1, . . . , nm withPm

k­1 nk ­ N . In the small kzl limit, there are many
isolated clusters (m large) which are small in size (nk ø
N ; k). In the largekzl limit there are only a few isolated
clusters (m small) and the largest cluster contains most o
the species.

We have measured the strengthP ­ maxkhnkyNj of
the largest cluster as a function ofkzl. Taking an
ensemble average, we find, as shown in Fig. 1(a), a pha
transition atkzlc ­ 1.00 6 0.01, above whichP becomes
finite. Indeed, we find thatP ~ skzl 2 kzlcdb with b ­
1.00 6 0.05; see Fig. 1(b). The phase transition can als
be followed in the inset of Fig. 1(a), where one observe
that the average connectivity in the largest clusterkzllargest
remains fairly constant whenkzl is close to the critical
point. The connectivity of the largest cluster at the
critical point kzllargest ­ 1.9998 6 0.0005 corresponds to
the demand that in a critical branching process on th
cluster, the process should be marginally transmitte
through each node. At the critical point the distribution
of subecologies is a power lawPsnd ~ n2tn with tn ­
2.50 6 0.10 as displayed in Fig. 1(c). This suggests tha
the phase transition is in the universality class of mean
field percolation, wherebperc ­ 1 andt

perc
n ­ 5y2 [8].

We now study evolution on a quenched random ne
work defined by the extremal dynamics of the BS mode
[5]. In this model one views an ecology as a dynami
cal system which consists of many species that intera
locally with each other. Each speciesi ­ 1, . . . , N is
© 1998 The American Physical Society
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FIG. 1. (a) The strengthP ­ maxkhnkyNj of the largest
cluster as a function of the mean coordination numberkzl.
There is a phase transition atkzlc ­ 1.00 6 0.01 above which
a macroscopic number of the species will be interconnected.
The inset shows how the average coordination number in
the largest clusterkzllargest increases withkzl and reaches a
value of1.9998 6 0.0005 at kzlc. Both curves were obtained
with an ensemble average over100 systems withN ­ 106.
(b) The strengthP of the largest cluster increases with the
distance from the critical coordination numberkzlc like a
power lawP ~ skzl 2 kzlcdb whereb ­ 1.00 6 0.05. The
displayed dashed line has a slopeb ­ 1. The data represent
an ensemble average over100 systems withN ­ 106. The
excess ofP when kzl 2 kzlc # 1022 is an effect of using a
finite N . (c) The distribution of cluster sizesPsnd at kzlc
displayed in a log-log plot. The data represent an average
over 1000 systems of sizesN ­ 106. The dashed line has a
slope of2tn ­ 22.5.
assigned a fitness parameterBi , which reflects its over-
all survival capability. These parameters are initially uni
formly distributed between0 and 1, and the system is
allowed to evolve as follows. At each step, the specie
imin with minimal fitness is located, and it undergoes
mutation: The procedure consists of reassigning a ra
dom value for the fitness ofimin. This mutation affects
the fitnesses of all the species with which it interacts (it
neighborhood), so they are also assigned new random
nesses. The scenario emerging from the BS model is
self-organized critical steady state: regardless of the initi
conditions, the fitness distribution of the ecology evolve
into a steplike function characterized by a threshold fitne
Bc. Furthermore, in the statistically stationary state var
ous physical quantities are power-law distributed. In pa
ticular, the sizes of an avalanche with thresholdB , Bc,
defined as the number of successively located minimum
site fitnessesBimin , such that allBimin , B. WhenB ! Bc

the avalanche size distribution is a power law:PBssd ~

s2ts . In standard studies on regular lattices it is foun
that the power-law avalanche size distribution is robu
and depends only on the dimensionality of the lattice. Th
first- and all-return times of activity to a given species
are also characteristic quantities which are power-law di
tributed [6]. Other studies of the BS dynamics under var
ousregular geometriescan be found in [9–13].

When we let the species on a quenchedrandom network
evolve according to the BS rules, we observe that, aft
a transient, changes typically occur only in the large
subecology. In fact, the minimal fitness remaining in
cluster as a function of its sizenk can be obtained by
noting that the gapGstd ­ maxt0,tfBminst0dg increases
fastest for small clusters [6]. Therefore the minima
fitness in smaller clusters becomes higher than for larg
clusters, and, thus, in the long time limit, only the larges
cluster will be visited. However, some exceptions migh
exist, for example, if a small cluster has a very high
coordination number compared to that of the large
cluster.
2381
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We have simulated the evolution on a quenched rando
network with neighbor numberszi selected, as described
above, so as to have a meankzl ­ kzlc. The results are
collected after the transient at the statistically stationa
state. The avalanche size distribution is displayed by t
circles in Fig. 2(a). We find that asB approachesBc ­
0.525 6 0.005 from below, the avalanche sizes becom
power-law distributed. The exponent that emerges wh
kzl ­ kzlc is ts ­ 1.20 6 0.05.
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FIG. 2. (a) The avalanche-size distributionPssd for the
BS model on a quenched random network with a critica
coordination numberkzl ­ 1 with Bc ­ 0.525 (circles) and
abovekzl ­ 2 with Bc ­ 0.3446 (squares), andkzl ­ 3 with
Bc ­ 0.2575 (triangles). After a transient of109 mutations,
the data were obtained by averaging over109 mutations in a
system of the size ofN ­ 217. The dashed lines correspond
to power laws with exponentsts ­ 1.2 andts ­ 1.5; i.e., one
observes different scalings for critical and overcritical network
respectively. (b) The average number of times that a si
becomes active as a function of its coordination number. Th
graphs refer to a criticalkzl ­ 1 (black) and super criticalkzl ­
2 (light grey) andkzl ­ 3 (dark grey) networks, respectively.
In each case, simulations were performed in a network of th
size ofN ­ 217.
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We have also studied the model withkzl . kzlc. Of
course,Bc depends onkzl. Increasing the connectivity
lowers the threshold fitnessBc [5]. With increasingkzl
we observe a crossover to the mean-field valuets ­ 3y2,
which is also seen in other versions of the BS mod
[9,12,13]. This is illustrated in Fig. 2(a), where the
avalanche size distribution is given forkzl ­ 2 with Bc ­
0.3446 and kzl ­ 3 with Bc ­ 0.2575. The different
behavior can be explained by looking at the geomet
of the network. Starting from a given site, we hav
measured the total number of unitsMs,d within , bonds
from a given site. Withkzl ­ kzlc we find Ms,d ~ ,Df ,
with Df ­ 1.88 6 0.05. Thus the dimensionality of the
largest cluster in this critical quenched random netwo
is indeed close to2 which might explain why the critical
exponents are close to the 2D exponents. However, wh
kzl . kzlc, Ms,d increases exponentially and mean-fiel
behavior is to be expected.

Finally we have measured, both at and abovekzlc, how
often different nodes on the largest cluster are visited
a function of the coordination number. In contrast to th
BS dynamics on cubic lattices (wherezi ­ 2D, indepen-
dent oni), the BS dynamics on quenched random network
is strongly nonergodic. Thus, although the first- and al
return-time exponents for all sites are the same, the over
frequency of visits to different species on the largest clust
varies considerably, as seen in Fig. 2(b). There are “h
spots” on the cluster, which are visited much more fre
quently than the rest of the network. Furthermore, the
hot spots are associated with species with the highest nu
ber of neighbors, which makes them the most vulnerab
ones. The tendency of the BS dynamics to select high
connected regions as the most active ones suggests tha
tremal dynamics may be an efficient way to dynamicall
evolve networks to a statistically stationary state of finit
connectivity (i.e.,.0 and of the order of,1 independent
of the system sizeN).

If modifications in the network are associated to up
dates in the BS model, then the network should under
changes especially at the hot spots. To illustrate this po
we have considered an updating algorithm where, with
small probabilityp, one bond is removed (added) from the
active site when its number of neighborszi exceeds (is less
than) the local average connectivity. Within a coevolution
ary framework, this would represent the possibility that
species might look for isolation from predators, or searc
for additional food sources, by approaching the avera
connectivity of its immediate environment. Figure 3 dis
plays the time evolution of the average coordination num
ber in the largest cluster as a function ofp. Independent
of the initial connectivity of the network, the system self
organizes into a network with average connectivity in th
largest clusterkzllargest ­ 2, and cluster size distribution
Psnd ~ n22.5. We note that the present dynamic networ
model generates networks with a connectivity distributio
somewhat narrower than a Poissonian. Accordingly, th
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FIG. 3. Evolution of the average coordination number in th
largest cluster with the number of mutations. The graph
correspond to the initial conditionskzl ­ 2 (circles) andkzl ­
3 (squares) with a probability to make local adjustmentsp ­
1022 (open) andp ­ 1023 (solid). A statistically stationary
attractor for the network is obtained in each case, independe
of the initial coordinations and independent of the value ofp.

observed value ofkzl in the total network differs from the
value 1.00 obtained, at the critical point, in the case o
quenched networks prepared with a Poisson connectiv
distribution.

In conclusion, we have studied the BS evolutio
model on random networks. In quenched networks whe
the coordination numbers are distributed according
a Poisson distribution, we recover, for high averag
connectivity between the nodes, the infinite dimensio
(mean-field) result. For a critical average connectivit
kzlc ­ 1.00 6 0.01, we find scaling similar to the2D
BS model, and thus consistent with a direct measureme
of a dimension1.88 of the largest cluster. Observing
that extremal dynamics on quenched networks tends
concentrate on highly connected nodes, we utilized th
to let the network geometry evolve dynamically. We
have demonstrated that with a simple dynamical rule th
network can self-organize into a critical geometry.

Critically connected networks have been suggested
Kauffman as a natural attractor for the genetic network
of living organisms [2,14]. The present study exemplifie
how anNK network of N genes, each of them coupled
to K neighboring genes, may evolve towards critica
geometries (K ­ z , 2). A crucial step in this process
is to define the fitness of the network as the correspondi
parameter value for the least fit of theN genes, and not,
as in the standardNK model [2,14], by the sum of all the
fitnesses in the ecology.

We should also mention that the use of extremal d
namics may have some advantages over population d
namics approaches to ecological modeling on large tim
scales. Since Eigen proposed hypercycles [1] as a na
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ral solution to memory storage in early life developmen
it has been shown that ecological feedback circuits a
unstable towards evolution of parasitic behaviors [15
Thus ecological networks driven by population dynamic
and occasional mutations typically break down into a fe
dominant species, as can be easily tested numerically.

It has been suggested [15] that some sort of compa
mentalization is a prerequisite to obtain some minim
level of complexity. Parametrizing evolution in terms o
fitness parameters, instead of population sizes, emphas
compartmentalization and other natural barriers. We thin
that modeling ecological networks evolution constraine
by barrier dynamics may be a way to add this min
mal level of structure into the dynamical evolution of the
system.
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