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Comment on “Self-Organized Criticality in the
Olami-Feder-Christensen Model”

Recently, de Carvalho and Prado [1] studied the criti-
cality of the Olami-Feder-Christensen (OFC) model [2].
Based on measurements of a branching ratio, they con-
cluded that the 2D OFC model on a square lattice is
critical only in the conservative limit a ! 0.25. In this
Comment, we reconsider some of the results obtained in
Ref. [1]. We show that a well-known relationship between
the branching ratio and average number of nodes for uncor-
related branching processes is also valid in the correlated
case. Using this exact relation to analyze the measured
branching ratio in the OFC model, we find the data to be
consistent with a critical model, even when nonconserva-
tive, contrary to the conclusion reached by de Carvalho
and Prado.

A branching process is defined as a sequence of random
variables �Xj�`

j�0, in which Xj represents the number of
nodes in the jth generation of a tree with P�X0 � 1� � 1.
The probability that a node has b branches is denoted by
pb, where

P`
b�0 pb � 1. For an uncorrelated branching

process, the nodes have identical pb’s. The branching ra-
tio s �

P
b bpb is the average number of branches per

node and will determine whether the process is subcritical
s , 1, critical s � 1, or supercritical s . 1. The av-
erage number of nodes S in an ensemble of trees and the
branching ratio s are related by (see, e.g., Ref. [3])

S �

Ω
1

12s for s , 1
` for s $ 1 .

(1)

Consider the avalanches in the OFC model on a square
lattice of linear size L and the level of conservation a

a correlated branching process. The toppling sites are
equivalent to the nodes in branching process. For each
node, we can measure the number b of new sites triggered
to topple, and the branching ratio is the average number
of new active sites produced by one toppling. If Nn�b�
denotes the number of sites causing b topplings, then each
(finite) avalanche n has an associated branching ratio

sn �
X

b b
Nn�b�P
b Nn�b�

�
sn 2 1

sn
, (2)

where sn is the (final) size of the avalanche. When
taking an ensemble average over many avalanches, each
avalanche has a weight proportional to its size, implying

s�a, L� �

P
n snsnP

n sn
� 1 2

1
S�a, L�

, (3)

where S�a, L� is the average avalanche size. This is the
generalization of the mean-field result Eq. (1) for s , 1.
Note that Eq. (3) is not fulfilled for all the data presented in
Ref. [1]. There are two possible scenarios: Either S�a, L�
keeps increasing with system size L or S�a, L� approaches
a finite constant as L ! `. Only if S�a, L� ! const will
limL!`s�a, L� be less that 1.
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FIG. 1. The branching ratio s�a, L� in the OFC model for
L � 100, 200, 300, and 400. The displayed points corre-
spond to a � 0.23 (circles), a � 0.24 (squares), and a � 0.25
(triangles). The dashed lines are of the form s�a, L� � 1 2
1�A�a�Lh�a�. An estimate of the error on the measured branch-
ing ratios is displayed when it exceeds the size of the symbol.

In Ref. [1] the branching ratio s�a, L� was measured
for various �a, L� values. The authors concluded that
the branching ratio tends to a value smaller than 1 in the
nonconservative case (a , 1�4) in the limit L ! `. By
using the same model parameters as Ref. [1], we have re-
peated the measures for s�a, L�, see Fig. 1. Based on
these data, one cannot numerically rule out the possibil-
ity s�a, L� ! 1 and hence that the OFC model remains
critical in the dissipative case contrary to the conclusion
advocated in Ref. [1].
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