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A Complexity View of Rainfall
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We show that rain events are analogous to a variety of nonequilibrium relaxation processes in Nature
such as earthquakes and avalanches. Analysis of high-resolution rain data reveals that power laws de-
scribe the number of rain events versus size and number of droughts versus duration. In addition, the
accumulated water column displays scale-less fluctuations. These statistical properties are the finger-
prints of a self-organized critical process and may serve as a benchmark for models of precipitation and
atmospheric processes.

DOI: 10.1103/PhysRevLett.88.018701 PACS numbers: 89.75.Da, 05.65. +b, 92.40.Ea
Rainfall and rainfall-related quantities have been
recorded for centuries [1,2]. All these measurements,
however, have the disadvantage of low temporal resolution
and low sensitivity. The rain measurements are based on
the simple idea of collecting rain in a container and mea-
suring the amount of water after a certain time. The time
intervals between readings are typically hours or days.
Even with the most sophisticated of these conventional
methods, the fine details of rain events cannot be captured
at all and very light rain might not be recorded due to
evaporation or insufficient sensitivity of the instrument,
making it impossible to address questions regarding single
rain events.

Recently, high-resolution data have been collected with
a compact vertically pointing Doppler radar MRR-2, de-
veloped by METEK [3]. The instrument is operated by
the Max-Planck-Institute for Meteorology, Hamburg, Ger-
many, at the Baltic coast Zingst �54±430N 12±670E� un-
der the Precipitation and Evaporation Project (PEP) in
BALTEX [4]. Rain rate, liquid water content, and drop size
distribution were obtained from the radar Doppler spec-
tra, based on a method described by Atlas [5–7]. At ver-
tical incidence, the Doppler shift can be identified with
the droplet fall velocity. As, in the atmosphere, larger
drops fall faster than smaller drops, spectral bins can be
attributed to corresponding drop sizes. For a given size,
the scattering cross section of the droplets can be calcu-
lated by Mie theory [8]. This yields the number density
of drops which is proportional to the spectral power di-
vided by the corresponding cross section. The rain rate
q�t� �

P
i niViyi, where ni is the number density of drops

of volume Vi falling with velocity yi . The detection thresh-
old for rain rates under the pertinent operation parameters
was qmin � 0.005 mm�h. Below this threshold, q�t� � 0
by definition.

Precipitation profiles up to some thousand meters alti-
tude can be observed. At present, the quantitative retrieval
is restricted to rain. Snow and hail can be identified from
the form of the Doppler spectra but have been excluded
from the quantitative analysis. The analyzed data refer to
18701-1 0031-9007�02�88(1)�018701(4)$15.00
250 m above sea level and have been collected from Janu-
ary to July 1999 with 1-min resolution.

The processes that make a cloud release its water content
are only very little understood. However, with the high
temporal resolution of 1 min, single rain events can be
identified and characterized. Previous work focused on the
rainfall during a fixed period of time [9–11]. What makes
the present analysis fundamentally new is the identification
of a rain event as the basic entity. We define an event as
a sequence of successive nonzero-rain rates. Sequences of
zero-rain rates in between rain events are called drought
periods. The event size is defined as the released water
column in mm, M �

P
t q�t�Dt, where Dt � 1 min, that

is, the time integral of the rain rate over an event. In Fig. 1,
the number density of rain events per year N�M� versus
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FIG. 1. The number density of rain events per year N�M�
versus event size M (open circles) on a double logarithmic scale.
A rain event is defined as a sequence of consecutive nonzero-rain
rates (averaged over 1 min). This implies that a rain event ter-
minates when it stops raining for a period of at least 1 min. The
size M of a rain event is the water column (volume per area)
released. Over at least 3 decades, the data are consistent with a
power law N�M� ~ M21.36, shown as a solid line.
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event size M is displayed on a double-logarithmic plot. In
a certain scaling regime, extending over at least 3 decades,
the number density of rain events obeys a simple power law

N�M� ~ M21.36, (1)

represented by the solid line in Fig. 1.
Figure 2 displays the number density of interoccurrence

times (drought durations) N�D� between successive rain
events. The drought duration is power-law distributed

N �D� ~ D21.42, (2)

implying there is no typical duration of droughts. We were
not able to detect a lower or an upper cutoff in this relation.
Both the lower end (1 min) and the upper end (2 weeks)
still lie within the scaling region of the power law. The
observed deviation around a period of 1 day is related to
the daily meteorological cycle.

It is compelling that the distributions of sizes of rain
events and drought periods are simple power laws. This
result could prove very useful in relation to drought haz-
ard assessment or flooding hazard assessment. In order
to calculate the expected number N�T� of droughts with
period D . d in a given time period T , we would have
to integrate N�D�. Assuming, for simplicity, that the
upper cutoff diverges, N �D� � const 3 D21.42, we find
N�T � � T 3 N�D . d� � T 3

const
0.42 3 d20.42.

The question of having a reliable water supply is of ut-
most importance. Hurst [1,2] posed the following problem:
How can one design a reservoir so that it never overflows
or empties? He considered an incoming signal q�t� over a
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FIG. 2. The number density of droughts per year N�D� ver-
sus drought duration D (open circles) on a double logarithmic
plot. The drought duration is the time, measured in minutes, be-
tween two successive rain events. The displayed solid line is a
power law N�D� ~ D21.42. The arrow indicates a time interval
of one day. The data deviate from the power-law behavior at
time intervals corresponding to about a day, reflecting the daily
meteorological cycle.
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time period t. In our case, q�t� is the rain rate. The actual
level of water in a reservoir (or a river) is determined by

X�t, t� �
tX

u�1
�q�u� 2 �q�t�Dt , (3)

where Dt � 1 min and

�q�t �
1
t

tX

t�1

q�t�Dt (4)

denotes the average influx in the considered time period t.
The water level needed for the reservoir never to empty is
given by the range

R�t� � max
1#t#t

X�t, t� 2 min
1#t#t

X�t,t� . (5)

One can now determine the dimensionless ratio R�t��S�t�
as a function of t, where S�t� is the standard deviation of
the influx q�t� in the period t. For uncorrelated random
events, this ratio increases as

R�t��S�t� ~ tH , (6)

where the Hurst exponent H � 1�2. However, Hurst [1,2]
discovered that for water level fluctuation in the Nile, H �
0.77. Figure 3 displays the water level X�t, t� in a virtual
reservoir for the rain data with t � 266 611 min.

Figure 4 demonstrates that R�t��S�t� ~ tH , H � 0.76
is obeyed over more than 4 decades with t [
�10 min, 266 611 min � 6 months�.

It is important to notice that these fluctuations are a re-
sult of the fluctuating rain rate alone and imply a correla-
tion between rain events over the whole temporal range
studied in this Letter. This extends Hurst’s result [2],
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FIG. 3. Reservoir level X�t, t� in mm for the entire record of
duration t � 266 611 min. The parts of the curve with negative
slope correspond to dry periods (droughts) where there is no
rain, only the mean outflux. The parts of the graph with positive
slope are periods with rain events. The steepness of the line
measures the difference between the influxes and the average
outflux. The range R�t� is indicated with a dashed line.
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FIG. 4. Log-log plot of values of R�t��S�t� against the cor-
responding period of length t (open circles). The solid line is a
power law R�t��S�t� ~ tH , H � 0.76. The data are consistent
with a power law over at least 4 decades. There is a lower cutoff
around t � 10 min but no upper cutoff is apparent.

which he found was valid in the temporal range t [
�1 yr, 1080 yr�.

It can be illustrated directly that the fluctuations of the
reservoir are statistically invariant under a transformation
that changes the time scale by a factor b and the level by
a factor bH [12]. In Fig. 5, the x axis of Fig. 3 has been
rescaled with a factor b and the y axis with a factor bH ,
and the similarity is indeed striking.
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FIG. 5. Reservoir level X�t, t� in mm for the initial part of the
record with a duration of t � 74 743 min. The correspond-
ing range R�t� is indicated with a dashed line. Compared
with Fig. 3, the x axis has been rescaled with a factor b �
266 611�74 743 � 3.57 while the y axis has been rescaled with
a factor bH � 2.63 � 300�115 demonstrating that the reservoir
level is a self-affine fractal.
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The power-law number density of rain events is con-
sistent with a self-organized critical process. The concept
of self-organized criticality [13–15] refers to the tendency
of nonequilibrium systems driven by slow constant en-
ergy input to organize themselves into critical states where
all scales are relevant. The characteristic feature of self-
organized critical systems, even if their dynamics are in-
comprehensibly complex, is that the intermediately stored
energy is eventually released in sudden bursts with no typi-
cal size.

A well-known example of such a system is the Earth’s
crust. Currents in the liquid core of the Earth drive the
crust slowly and fairly constantly. The energy deposited by
these currents is intermediately stored in tension building
up between the tectonic plates and then suddenly released
in earthquakes. The number of earthquakes per year with a
seismic moment S exceeding s is given by the Gutenberg-
Richter law [16]

N�S . s� ~ s2B; (7)

that is, there is no typical size for earthquakes. This sug-
gests that all the earthquakes have the same physical origin
and that the Earth’s crust is poised in a critical state.

Avalanches in a pile of grains might also display self-
organized criticality: when grains are dropped onto a pile,
one by one, the pile ultimately reaches a stationary critical
state in which its slope fluctuates about a constant angle of
repose, with each new grain being capable of inducing an
avalanche on any of the relevant size scales [17].

From the perspective of self-organized criticality, rain
events do not look very different from earthquakes or
avalanches. If a rain shower, regardless of its duration
or intensity, is defined as an event, the correspondence to
avalanches in granular media and avalanches in the crust
of the Earth is striking. The atmosphere is the system un-
der investigation and corresponds to the Earth’s crust or
the granular pile. It is driven by a slow and constant en-
ergy input from the Sun. In particular, water is evaporated
from the oceans. The energy is stored in the form of wa-
ter vapor in the atmosphere. It is then suddenly released
in bursts when the vapor condenses to water drops. The
power-law distribution of the number density of rain events
versus size is equivalent to the Gutenberg-Richter law for
earthquakes and the power-law distribution of avalanche
size. There is no constant drizzle accounting for the con-
stant evaporation but rain events of a wide range of sizes.
One could imagine having a classification of rain events
according to their size just as earthquakes are classified
according to their position on the Richter scale.

In summary, we found that simple power laws describe
the number density of occurrence of rain events of a given
size and drought periods. Moreover, Hurst’s analysis from
the 1950s on water level fluctuations was extended by more
than 4 decades, from a year down to minutes. This insight
will inevitably inspire new research into the modeling of
precipitation and atmospheric processes as well as serve as
018701-3
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a benchmark for existing models and might be useful in,
e.g., drought and flooding hazard assessment. On a more
general level, our analyses show that new insights can be
obtained from taking the very general point of view of
complexity and self-organization theory. It may serve as
an example of how to use this approach in situations that
seem too complex to be accessible to quantitative analysis.
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