
FIG. 1 (color online). Distribution of mean rates R for earth-
quakes with magnitude M 	 2 in Southern California, dividing
the area �123
W; 113
W� � �30
N; 40
N� in cells of size L and
averaging the periods 1984–1992 and 1993–2001. The distri-
butions are rescaled by Ldf , with df � 1:6. For small R=Ldf , the
data are best fit by a density p�R� / 1=R0:8.
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Comment on ‘‘Earthquakes Descaled: On Waiting
Time Distributions and Scaling Laws’’

Lindman et al. [1] have used a nonhomogeneous Poisson
process with a modified Omori rate, r�t� � dn=dt �
rM�1� t=c��p, to model earthquake occurrence. We are
going to show that, contrary to claims in Ref. [1], this
extremely simple description is incomplete in order to
explain Bak et al.’s unified scaling law [2].

We generalize Lindman et al.’s model by introducing an
r-dependent waiting-time probability density of the form
D��jr� / r����1e�r�=a, which includes the nonhomoge-
neous Poisson process of Ref. [1], given by � � 1 and a �
1 (both parameters linked by normalization). The proba-
bility density of the waiting times in the Omori sequence,
independent of r, is given by the mixing of all D��jr� [3],

D��jrm� �
1

�

Z rM

rm
rD��jr���r�dr; (1)

where ��r� is the density of rates, ��r� / jdr=dtj�1 �

C=r1�1=p; � is the mean rate of the sequence, � �R
r�dr; rM is the maximum rate, corresponding to t � 0;

and rm is the minimum rate, related to the background
seismicity level. Note that we have emphasized the depen-
dence on rm.

Easy to deal with but illuminating is the case � � 1=p,
which yields

D��jrm� /
C
�
�e�rm�=a � e�rM�=a�

�2�1=p
; (2)

where the minimum rate rm determines the exponential tail
ofD��jrm� for large �, preceded by a decreasing power law
with exponent 2� 1=p if rM � rm. For p � 1, this is in
agreement with the simulation and numerics in Fig. 1 of
Ref. [1]; however, it can be shown that the exponent
2� 1=p holds even when � � 1=p, which is in disagree-
ment with Lindman et al.’s claim of a 1=�p decay for p < 1
and 1=�

���
p
p

for p > 1.
Nevertheless, this description totally ignores the spatial

degrees of freedom, fundamental in Bak et al.’s approach.
In fact, Bak et al.’s approach performs a mixing of waiting
times coming from different spatial areas (or cells), which
are characterized by disparate seismic rates. In particular,
each area will have a different rm, depending on its back-
ground seismicity level. This spatial heterogeneity of seis-
micity can be described by a power-law distribution of
mean rates R, R being the total number of events divided
by the total time for a given area (see Fig. 1 and Ref. [3]); if
we assume that the minimum rate rm is directly related to
the mean rate of the sequence �, which in turn is in
correspondence with the mean rate in the area R, then
p�rm� / 1=r1��

m , and, therefore, the waiting-time probabil-
ity density comes from the mixing,

D��� /
Z rmM

rmm
rmD��jrm�p�rm�drm; (3)
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where rm varies between rmm and rmM. Integration, taking
into account that C=� depends on rm, leads to

D��� / 1=�2�� for rmm�� 1� rmM�; (4)

which is in disagreement with Lindman et al.’s analysis.
In fact, the power law for long times [Eq. (4)] was

established in Ref. [3] for Southern California but without
relating it to the spatial heterogeneity of seismicity. The
universal value of the exponent 2� �, found in Ref. [4]
analyzing diverse seismic catalogs, would imply the uni-
versality of seismicity spatial heterogeneities. In conse-
quence, Bak et al.’s unified scaling law provides a way to
measure these properties and is far from being as trivial as
suggested by Lindman et al.’s approach. Further, Eq. (4)
shows that the kink in D��� appears for � larger than
1=rmM, which corresponds, for the area of highest seis-
micity, to the mean of events that are in the tail of the
Omori sequence, or in background seismicity, and there-
fore at the onset of correlation with the main shock.

The model presented here is still too simple for real
seismicity but provides a clear visualization of its complex-
ity and the fundamentals of the unified scaling law of
earthquakes.
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