
Self-Organised Criticality
in

Cellular Automata

MSci Project Report

Peter Dorn & David Hughes

May 2000

The Blackett Laboratory
Imperial College

London

Abstract

Self-organised critical behaviour is investigated in cellular automata. Considered are
the Bak-Tang-Wiesenfeld (BTW) sandpile model and an extension to the Oslo model
(Christensen et al., Phys. Rev. Lett. 77, 107 (1996)) in up to three dimensions,
with numerical work focussed on the probability distribution P (s) of avalanche sizes.
At large system sizes, two power law regions of marginally differing scaling exponents
are observable in the 2D BTW system. Possible interpretations and the consequences
for the scaling behaviour of the critical exponent τs,L with L are investigated. For
this model and the bulk driven 1D Oslo model with dissipative boundaries, τs,L is
found to be proportional to logL and the existence of a limiting value τs,∞ for infinite
system sizes cannot be confirmed numerically. Other models, including the original
Oslo model, display no measurable dependence of τs,L on L. An asymptotic approach
of the slope of P (s) to τs,L with s is observed in all presented models. This effect is
explained from the scale-dependence of the dynamics and illustrated for the 2D BTW
model with the dynamically driven renormalisation group (DDRG) approach. For this,
a fast approximation to the DDRG description of the system dynamics is introduced.

iii

iv

Contents

1 Introduction 1

2 Models 3
2.1 BTW model . 3
2.2 Oslo model . 4
2.3 Measures . 4

2.3.1 Avalanche size . 4
2.3.2 Avalanche duration . 4
2.3.3 Radius of gyration . 4

3 Code and Method of Analysis 5
3.1 Simulation code . 5

3.1.1 Determining criticality . 5
3.1.2 Queue . 6
3.1.3 Random number generation . 6
3.1.4 Time and memory constraints . 6

3.2 Method of analysis . 7
3.2.1 Logarithmic binning . 7
3.2.2 Determination of τs . 8

4 Theoretical Results 9
4.1 Dynamically driven renormalisation group 9

4.1.1 The DDRG formalism . 9
4.1.2 Approximations in the DDRG approach 10
4.1.3 Modifications to the original DDRG 10

4.1.4 Fast approximation to the p
(k+1)
n terms in the DDRG 11

4.2 Asymptotic scaling . 14
4.3 Dissipative and non-dissipative avalanches 16
4.4 Implications of theoretical results . 16

5 Numerical Results 19
5.1 Results for P (s) . 19

5.1.1 1D Oslo . 19
5.1.2 2D BTW . 21
5.1.3 2D Oslo . 23
5.1.4 3D BTW . 23
5.1.5 3D Oslo . 24

5.2 Structure of avalanches . 24

v

6 Discussion 27

7 Conclusion 29

Acknowledgements 32

Bibliography 35

Appendices

A Overview of Simulation Code 39
A.1 Program structure . 39
A.2 Known limitations . 39

B Simulation Code 41

C Logarithmic Binning Code 59

D Modified tn after inclusion of ρ′ 63

E Mapping for approximative DDRG 65

F Iteration of approximative DDRG 67

vi

1 Introduction

The concept of Self-Organized Criticality (SOC) introduced in 1987 by Bak, Tang and
Wiesenfeld (BTW) proposes the existence of a class of systems in which the critical
state is an attractor of the dynamics [1, 2]. Such systems do not require fine tuning
of external parameters to reach the state of criticality, characterised by power law
distributions where the effects of small perturbations spread on all length and time
scales. The example commonly used to illustrate SOC is that of a sandpile. Grains of
sand dropped onto a finite size base build up a pile, which eventually reaches a critical
slope. In this state, further additions will cause avalanches of all sizes, limited only by
the system size.

Many systems which occur in nature are considered to be examples of SOC [3, 4].
Earthquakes [5], forest fires [6, 7], vortices in superconductors [8], evolution [9] and
piles of granular material [10] have been modelled in an attempt to understand the
mechanisms leading to the observed scale invariance. Physical experiments have shown
power law behaviour in some systems, however these observations are not as insensitive
to system parameters as was hoped [11–14].

In order to help understand the basic mechanism of SOC, attempts have been made
to assign models to universality classes, where models in a class are described by the
same set of exponents of the observed power law distributions. Previous studies have
concentrated on the BTW sandpile model [1,2], the Zhang model [15] and the Manna
model [16]. Theoretical analyses suggest that these models should belong to the same
universality class [17–21]. This corresponds with intuitive expectations that small
changes in the models should not dramatically change their behaviour for sufficiently
large systems. However, numerical simulations have so far failed to produce consistent
results [22–25]. In this context we investigate the scaling behaviour of the BTW model
and a stochastic variant based on the Oslo model [26]. These models are studied
numerically in up to three dimensions and links between these results and theoretical
work are identified.

1

2

2 Models

The BTW model has been examined extensively both numerically and analytically
since its introduction in 1987. However, the various analysis techniques have yielded
significantly different results. The Oslo model has received much less attention and
results have only been published for the one dimensional case.

2.1 BTW model

At each point i on a d-dimensional hypercubic lattice an integer variable z is defined
which represents the height of the sand column at that site. Starting from arbitrary
initial conditions grains are added one at a time to a randomly chosen site

zi → zi + 1

If this new value reaches or exceeds the height threshold parameter zc = 2d the site is
unstable and topples. During a toppling the height of the sand column at the site is
reduced by

zi → zi − 2d

This sand is redistributed equally to the 2d nearest neighbours, znn, so that

znn → znn + 1

If the height of the nearest neighbours now exceeds zc they are toppled in turn and
the avalanche continues until all sites are stable. Figure 2.1 shows the progression of a
small avalanche on a 3× 3 lattice. The model is slowly driven, so that all avalanches
are allowed to finish before the next addition of sand. Grains crossing a boundary
are removed from the system. The BTW model displays SOC only in two or more
dimensions.

Figure 2.1: Progression of an avalanche of the BTW model. A sand grain is dropped on a stable
configuration at the central site (Adapted from [27]).

3

2.2 Oslo model

The Oslo model is a variation on the BTW model with a dynamically varying critical
height [26]. Each lattice point is now assigned its own critical height parameter zc,i
which is determined stochastically both initially and each time that lattice site is
relaxed. The critical height at each lattice point zc,i takes one of two values, 2d or
2d + 1, with equal probability. All other rules are the same as the BTW model. In
addition to dissipating boundaries and bulk driving, the Oslo model in one dimension
is also studied with one conserving boundary and edge driving at this boundary.

2.3 Measures

2.3.1 Avalanche size

The avalanche size s is defined as the total number of topplings during an avalanche.
The corresponding probability distribution for a given system size L is given by P (s, L),
which is thought to follow a power law with exponent τs.

2.3.2 Avalanche duration

The duration of an avalanche is the total number of time steps taken from the start
to the end of its propagation. The initial toppling is assigned time 0 and any of its
nearest neighbours which are caused to become unstable are assigned time t = 1. Sites
caused to become unstable by topplings from t = 1 sites are assigned t = 2 and so on.
The value of t of the last site toppled is taken to be the avalanche duration.

2.3.3 Radius of gyration

The radius of gyration Rs is the mean squared deviation from the average position. If
ri is the position of the ith toppling, and r0 is the average toppling position

r0 =
s∑

i=1

ri
s
,

then the radius of gyration is calculated as

R2
s =

s∑

i=1

|ri − r0|2
s

.

4

3 Code and Method of Analysis

3.1 Simulation code

The code is written in C++ and is designed for speed and versatility. The program
is capable of simulating systems with any linear extent in any dimension, subject to
physical memory constraints. Its structure is object oriented, ensuring that the pro-
gram can be easily extended to incorporate new models and measures. Some platform
dependent functions are used, with support for DEC Unix and Win32 environments.
The most important aspects of the program are explained below. More information
about the program as well as a diagram of the function dependency can be found in
Appendix A. A full program listing is provided in Appendix B.

3.1.1 Determining criticality

The value of the average height <z> fluctuates around a fixed value when the system
is critical and heads towards this value from any arbitrary starting configuration. Once
the sytem is in this critical state, the program starts recording results. Two moving
averages are taken, with the faster one giving greater weighting to the last value of
<z>. When the fast moving average drops below the value of the slow one due to
fluctuations of <z>, the system is taken to be critical (see Figure 3.1).

0 5000 10000 15000
Number of avalanches

2.00

2.05

2.10

2.15

2.20

<
z>

, m
ov

in
g

av
er

ag
e

va
lu

e

<z>
Slow moving average
Fast moving average

Figure 3.1: Fluctuations of <z> and its moving averages. Values are calculated every 1000
avalanches and results are recorded after the two moving averages cross for the first time.

5

3.1.2 Queue

The queue is an array that stores the positions of unstable locations, which are stepped
through and relaxed in turn. If during a relaxation process a site becomes unstable,
it is added to the end of the queue, hence sites are relaxed in the order in which they
become critical. It is not yet known whether the Oslo model is Abelian, so the order
of relaxation may make a difference to the measured values.

The queue has a certain maximum size, determined by memory constraints. If
the total size of an avalanche exceeds the queue size, the information is wrapped to
the start of the queue. So for a queue of limit n, q[n + 1] = q[0], q[n + 2] = q[1]...
This method ensures that very large avalanches can be calculated while controlling
memory requirements. However, as not all data is available, some measures cannot be
calculated for these large avalanches.

3.1.3 Random number generation

The random number generator employed is taken from [28]. This generator is based
on the simple multiplicative congruential algorithm

Ij+1 = aIj (mod m) (3.1)

where a and m are carefully chosen constants. The generator uses two such sequences
with different constants and uses one sequence to shuffle the order of the other. The
purpose of this is to break up serial correlations that exist in equation 3.1. The
generator produces uncorrelated random numbers, has a very long period (> 2× 1018)
and is extremely fast. These properties are necessary for simulations of the Oslo model,
which requires a random number to be generated for each relaxation. Each presented
result for these systems required up to 1010 random numbers. The generator is seeded
with the system clock to prevent correlations between runs.

3.1.4 Time and memory constraints

To reduce memory requirements, the array that stores the size of avalanches is fixed
to a certain maximum value. The size of any avalanche above this value is stored in a
file on the hard disk. Although this is much slower than memory storage, power law
behaviour ensures that only a small number of avalanches have to be treated in this
manner. When the desired number of avalanches has been calculated, the file is sorted
(using [29]), and appended to the results output.

Unfortunately this virtual memory method cannot be applied to the array that
stores the sandpile, as all the members of the array are required frequently. This would
result in continual disk access and vastly increased calculation times. The maximum
system size that can be calculated is therefore limited by system memory.

6

3.2 Method of analysis

3.2.1 Logarithmic binning

The raw program output suffers from high statistical noise, particularly at large ava-
lanche values. Due to power law behaviour this problem remains even for data sets
with very large numbers of avalanches. To reduce this noise the data is binned, with
the size of the bins increasing exponentially. The start and end of the position of the

kth bin are calculated by

xk = (1 + a)bk

xk+1 = b xk

where a is the offset and b is the base. The kth bin value Bval,k is given by the average
data value between xk and xk+1. The position of the bin Bpos,k is then calculated
from the geometric mean of the start and end of the bin. The geometric mean provides
a better approximation to power law behaviour than the arithmetic mean. Figure 3.2
shows the raw data output from the program and the data after binning.

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

Figure 3.2: Raw and binned avalanche size distribution P (s) for 2D Oslo model with L = 2048.

Offsets and bases of different sizes are used to prevent emphasizing spurious effects
due to the binning process. Bases used in the calculations ranged from 1.1 to 1.9 in
steps of 0.1, and offsets ranged from 0 to 0.8 in steps of 0.2. As bins calculated in
this way are smaller than unity for small s, the end of a bin xk+1 is incremented until
the bin contains at least one value or until the end of the input file is reached. The
drawback to binning in this way is that small inaccuracies are introduced at small
values of x. This is acceptable here for P (s) as the small s values are outside the
scaling region.

7

3.2.2 Determination of τs

The value of τs can be found from the slope of the binned data by

d logP (s)

d log s
≈ ∆ logBval

∆ logBpos
. (3.2)

The values of d(log P (s))/d(log s) calculated from the different logarithmic bases are
then binned to produce a histogram. This indicates the frequency of occurence of a
particular local slope. Power law behaviour would result in a narrow spike centered on
the value of τs, with the width of the peak indicating the level of statistical noise. The
histogram uses the data points calculated from all the bases and offsets, with the data
points weighted such that each base size makes the same overall contribution. This
weighting prevents the smaller bases with relatively high statistical noise dominating
the histogram.

10
0

10
2

10
4

10
6

10
8

s

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

d(
lo

g
P

(s
))

/d
(lo

g
s)

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0
d(log P(s))/d(log s)

0.0

10.0

20.0

30.0

W
ei

gh
te

d
F

re
qu

en
cy

Figure 3.3: Variation in slope of P (s) with s for 2D Oslo model with L=2048 (left) and histogram
showing the frequency of occurance of these slope values(right)

8

4 Theoretical Results

A complete mathematical theory of SOC does not yet exist. However, several ap-
proaches for the calculation of one or more properties of the sandpile systems have
been proposed. The 2D BTW model has been at the centre of these efforts and the
discussion in this section will focus on this system to offer explanations for some of the
unexpected features observed in the numerical treatment.

Dhar has shown the BTW model to be Abelian [30] and this property has been
used to determine several of its characteristics [31–33]. The picture of waves of single
topplings as the constituent elements of an avalanche has also been investigated [34–37].
Waves are now well understood for the 2D BTW model [38], but multiple topplings
prevent a direct explanation of the scaling behaviour of avalanches in terms these
results.

Other theoretical work includes a mean-field approach [39] and a real space renor-
malisation scheme. This renormalisation scheme is discussed in detail below as it pro-
vides useful insight to the scale-dependence of the dynamics and may be transferable
to similar Abelian systems.

4.1 Dynamically driven renormalisation group

4.1.1 The DDRG formalism

The dynamically driven renormalisation group (DDRG) has been suggested by Pietronero
et al. [17, 18] as a theoretical approach to determining the properties of the 2D BTW
model in the limit of infinite system size. The method starts from describing the dy-
namics in finite size cells of the sandpile models, each containing four subcells. The
dynamics of the compound cell are described in terms of the dynamics of its subcells.
The method is iterated by then taking the resulting dynamics of the compound cell as
those of each subcell at the next larger scale and reapplying the equations. Thus each
iteration of the equations corresponds to doubling of the scale under consideration, so
that the number of elementary cells along each edge of the compound cell L at scale
k is given by L = 2k. After several iterations of this map, the dynamics of the cell
are found to be equivalent to those of its subcells, i.e. the system has reached a fixed
point with scale-invariant behaviour.

From the properties of the fixed point, the exponent for the probability distribution
of topplings τs can be determined. The driving and dissipation in the system must be
taken into account in this iteration, so that energy, or grain number, is conserved in
each cell.

9

Hence

ρ(k+1) =
1

∑

n

np
(k+1)
n

(4.1)

must be observed, where ρ(k+1) is the density of critical sites at scale k + 1 and pn
with n = 1, 2, 3, 4 are the elements of p describing the probabilities of a toppling cell to
throw out grains at n sides. This nonlinear driving condition reproduces the feedback
between ρ and p that determines the dynamics of the model.

Following [17, 18], the value of τs can be determined from this by considering the
probability K of an avalanche stopping at scale k. The argument results in

τs = 1− 1

2

log (1−K)

log 2
, (4.2)

where K is also given by
K =

∑

n

p∗n(1− ρ∗)n (4.3)

and can therefore be determined from the fixed point properties ρ∗ and p∗.

4.1.2 Approximations in the DDRG approach

Equation 4.2 assumes that avalanche size s and radius r are related by s ∝ r2. Even
though avalanches are found to be compact in 2D [40], multiple topplings within the
avalanche region increase the dependence of s on r (see Figure 4.1). Multiple topplings
are neglected in both the calculation of τs by equation 4.2 and the description of the

dynamics by the p
(k+1)
n terms. The DDRG method can thus be seen to implicitly

assume that the corresponding fractal dimension approaches 2 as L → ∞. This is
equivalent to the assumption of one dominating wave of avalanches and an explanation
of the validity of the DDRG results from the wave picture is offered by Ktitarev et
al. [37]. A more complete description of the dynamics taking account of multiple
topplings would consequently require the fractal dimension of the avalanche in r to
retrieve τs. However, as a consequence of avalanche ‘aging’ [36, 41], no unique fractal
dimension for the dependence of s on r would be expected and multiple topplings
cannot easily form an extension of the DDRG formalism.

A further approximation is included in the classification of process series solely by
the number of sides at which grains leave, rather than the number of grains leaving at

each side. The p
(k+1)
n terms entering the driving condition describe the propagation of

‘excitations’ rather than grains. A compound cell is assumed to receive no more than
one excitation, which at the subcell level is regarded as the addition of one grain to
one subcell. In contrast, the rules of the model allow for two grains to enter from a
neighbouring cell and excite both subcells at the corresponding side. The stationarity
criterion in equation 4.1 therefore results in the conservation of excitations rather than
grains.

Additional limitations also exist, such as the necessary limitation of the range of
cells considered when constructing the process series.

4.1.3 Modifications to the original DDRG

Modifications to the original DDRG scheme have been suggested, varying in the set
of processes considered and in the geometry of the compound cell. Ivashkevich et al.

10

0

128

x
0

128

y

5

q

0

128

x

Figure 4.1: Plotting the number of topplings q for each site in the 2D BTW model illustrates
that the dependence of s on r is stronger than s ∝ r2. The data is taken from a dissipative
avalanche of size s ≈ 12000. The plot also shows the fractality of the avalanche boundary
described in [39, 42, 43]. The temporal progression of this avalanche can be seen in Figure 5.12.

extended the definition of p to include purely internal spanning processes, denoted by
p0 [44]. Moreno et al. presented an alternative geometry for the compound cell in
the form of a Greek cross containing five subcells [45]. The values of τs resulting from
these modified schemes and the original work by Pietronero et al. are

τs ≈ 1.253 Pietronero et al. [17, 18] Square cell, p = {p1, p2, p3, p4}
τs ≈ 1.262 Ivashkevich et al. [44] Square cell, p = {p0, p1, p2, p3, p4}
τs ≈ 1.236 Moreno et al. [45] Greek cross cell, p = {p1, p2, p3, p4}

Table 4.1: Published values of τs from DDRG calculations.

A similar approach taking account of height probabilities and thereby describing the
system dynamics more fully, results in τs = 1.248 [44]. The variations of the values from
these different schemes illustrate the approximative nature of the DDRG approach.

4.1.4 Fast approximation to the p(k+1)
n terms in the DDRG

Knowledge of the processes p
(k+1)
n at scale k + 1 in terms of those at the subcell scale

k readily allows iteration of this map with the restriction of the driving condition.

However, the lengthy construction of these p
(k+1)
n terms makes it impractical to test

the effect of small variations in the description of the dynamics on the result.
This modified approach to generating the terms involves the use of a mapping

method to assign each process series at scale k to the corresponding large scale pro-

cesses p
(k+1)
n . The method results in a considerable increase in ease of calculation and

versatility at the expense of introducing a further approximation. The motivation for
this is to obtain a tool for discussions on the dynamics of the system, for which a small
deviation from previously published results is acceptable.

11

The properties of each process in a process series can be fully characterised by
separately considering its contribution towards the propagation of the avalanche in the
cell and the number of grains leaving the cell. Four ways of propagation inside the
cell can be identified. In each process, a grain can be thrown to either one of its two

distinct nearest neighbours, to both of them or to neither. Grouping the processes p
(k)
n

according to their probability of propagating in these ways gives

n1 =
1

4
p

(k)
1 +

1

3
p

(k)
2 +

1

4
p

(k)
3 (4.4)

n2 =
1

4
p

(k)
1 +

1

3
p

(k)
2 +

1

4
p

(k)
3

b =
1

6
p

(k)
2 +

1

2
p

(k)
3 + p

(k)
4

x = p
(k)
0 +

1

2
p

(k)
1 +

1

6
p

(k)
2

where n1 and n2 denote the toppling to only one nearest neighbour, b stands for both
and x for none of them. The number of grains leaving the cell can be determined by
subtracting 1 from n for the processes in n1 and n2, 2 for those in b and 0 for x. As a

result of this, the same p
(k)
n in different groups are now distinguishable and are denoted

by p
(k)
n,c for a p

(k)
n process throwing c grains outside the cell.

Each possible process series can now be written in terms of the these process groups
and the density ρ of critical sites. The process series are grouped by the number m of
toppling sites and these groups are denoted by tm.

t0 = (1− ρ) (4.5)

t1 = ρ[x+ (n1 + n2)(1 − ρ) + b((1− ρ)2]

t2 = ρ[{(n1 + n2)ρ+ 2bρ(1 − ρ)}
·{n1 + n2(1− ρ) + b(1− ρ) + x}]

t3 = ρ[{(n1 + n2)ρ

·{(n2 + b)ρ}
·{n1 + n2(1− ρ) + b(1− ρ) + x}
+{2bρ(1− ρ)}
·{(n2 + b)ρ}
·{n1 + n2 + b+ x}
+{bρ2}
·{(n1 + x)2 + (n1 + x)(n2 + b)(1− ρ)}]

t4 = ρ[{(n1 + n2)ρ}
·{(n2 + b)ρ}
·{(n2 + b)ρ}
·{n1 + n2 + b+ x}
+{bρ2}
·{(n1 + x)(n2 + b)ρ}
·{n1 + n2 + b+ x}]

12

Spanning processes are therefore given by the sum of t2, t3 and t4. After substitut-
ing for the process groups from equation 4.5 and expanding, the sum of t2, t3 and t4
includes all possible process series in terms of elementary processes p

(k)
n,c. Each of the

resulting terms contains information on the number of topplings as well as the number
of grains leaving at each toppling. This information can then be used to assign weight-

ings for the inclusion into the larger scale processes p
(k+1)
n to each process series. A

process series consisting of two p
(k)
n,1 processes can be seen to have probabilities of 1

4 to

throw out grains to one side and 3
4 to topple across its cell boundaries on two sides. The

corresponding vector of weightings for p
(k+1)
0 to p

(k+1)
4 is thereby m1,1 = {0, 1

4 ,
3
4 , 0, 0}.

A complete list of all 31 vectors is included in Appendix E.

The approximation contained in this approach leads to a deviation for three or four
topplings. When calculating the mapping vectors m, the processes are permutated
through the available sites. All permutations enter with equal weight, disregarding

the actual probability of their occurence. The term p
(k)
x1,0

p
(k)
x2,1

p
(k)
x3,2

, for example, cor-
responds to each of the three configurations shown below. These only differ in the
positions of the sites relaxing with these different processes.

a) b) c)

Figure 4.2: Equal weighting of all possible configurations constitutes the approximation in the
mapping method. While a) and c) both have equal probabilities to topple to 2 or 3 sides,
configuration b) always propagates to 3 sides. Hence probabilities of 1

3
for 2 sides and 2

3
for 3

sides are assumed for the ensemble, although the configurations would not generally have equal
odds of occuring.

The initial excitation can occur at the centre subcell of the series, which has two
toppling neighbours, or at either of these neighbours. For each process, the minimum
value of the total number xi of grains leaving the toppling subcell is the sum of the
number of grains leaving the compound cell and the number of grains required for prop-
agation towards the final state. Hence only configuration b) can occur for an excitation
at any toppling subcell if xi ≤ 2 ∀ i. Configuration c) can occur with this restriction
if the initial excitation is not at the centre subcell, while configuration a) requires at

least one p
(k)
4,2 process if the centre subcell is excited and at least one p

(k)
3,2 process oth-

erwise. The correct weighting could thus only be obtained by having mapping vector

elements dependent on the values of the relevant p
(k)
n,c processes or explicitly assigning

each possible process series to the correct process groups, by which equivalence to the
original method should be recovered.

The value of τs resulting from this approximative approach is

τs ≈ 1.265 .

In the presented form, the method represents an approximation to the work of Ivashke-
vich et al. and the above result is very close to their value of τs ≈ 1.262. The presented
method is therefore assumed to be a useful approximation.

13

Modifications to the assumptions made about the dynamics in the square cell can
be made more easily with this approach and allow for some of the assumptions used
in the description of the dynamics to be tested for their validity. Extra terms can
be added to allow for those sites toppling only after receiving two grains from its
neighbours to give modified versions of t3 and t4 in equation 4.6 (see Appendix D).
This toppling of initially subcritical sites can occur within the rules of the model and
corresponds to defining a density ρ′ of sites becoming critical after the addition of one
grain. A full treatment would need to take account of this in the driving condition, but
an estimate can be obtained by assuming that ρ′ = (1−ρ)

2 , giving τs ≈ 1.266. Hence it
can be confirmed that the effect of this approximation is small, but that nevertheless
the values in [17, 18] and in the first method presented in [44] would be expected to
increase slightly with the inclusion of this effect. The improved scheme in [44] does
not contain this approximation.

An extension of this scheme to higher dimensions would require further approxima-
tions. In 2D, the approximation lies only in the weighting of configurations on a unique
spatial arrangement of toppling cells. For three dimensions, also the arrangement of
toppling cells is not unique for 4, 5, or 6 topplings, leading to further deviations.

Figure 4.3: Possible arrangements of four topplings on a three dimensional elementary cell.
Heavy lines mark connections between toppling sites.

The basic approach of the method presented here, to consider propagative and dis-
sipative topplings of a process separately, can also be used for an easier computational
implementation of the generation of the process series. This would allow solutions in
higher dimensions, but after first trials the required calculational cost appears to be
prohibitive. In addition, the step of retrieving τs could not be adapted for dimensions
above the critical dimension, as avalanches are no longer compact [46].

4.2 Asymptotic scaling

Rather than being an artefact of the method, the trajectory of p towards the fixed
point can be explained as a true representation of scale-dependence in the dynamics
of the model. At the smallest scale, the elementary cell has fixed toppling behaviour
described by p = {0, 0, 0, 0, 1}. With grains toppling to all four sides a second toppling
is likely and hence the slope of P (s) is expected to be low. With increasing scale,
the cell dynamics approach the fixed point rules p∗, so the average number of sides
involved in a toppling decreases. A propagation of the avalanche thus becomes less
likely and the slope of P (s) is expected to gradually decrease towards the slope τs
corresponding to the fixed point dynamics.

14

This transition can be demonstrated on the minimum number of sides that are
involved in a toppling process at each of the first four scales k = 0, 1, 2, 3.

k=0 k=1 k=2 k=3
L=1 L=2 L=4 L=8
p4 p3, p4 p2, p3, p4 p0, p1, p2, p3, p4

Figure 4.4: Scale-dependent dynamics at smallest scales. Shown are the minimally dissipative
process series at small k. The range of non-zero elements of p is listed for each scale. Table 4.2
shows the corresponding numerical values of p.

In the full DDRG calculation, the first iterations, corresponding to the first four scales
shown above, correctly reproduce this behaviour. The probability mass shifts to lower
pn and a non-zero value of p0 is first observed at k = 3.

k L p0 p1 p2 p3 p4

0 1 0 0 0 0 1

1 2 0 0 0 0.6429 0.3571

2 4 0 0.0176 0.2136 0.5556 0.2133

3 8 0.0014 0.0602 0.3157 0.4701 0.1527

Table 4.2: Iteration of p
(k+1)
n map from fast approximation method (rounded values).

Following this iteration to the fixed point shows that the deviation from the scale-
invariant dynamics, which would be trivially expected for small s, does not fully decay
until k = 66 within the precision of the computational iteration (see Appendix F). Such
an asymptotic approach is observed in the numerical results of all presented models.
In addition, the 1D Oslo and 2D BTW models display a preference for particular
avalanche sizes, which also asymptotically decays with s (see Figure 4.6).

10
0

10
1

10
2

10
3

s

10
-4

10
-3

10
-2

10
-1

10
0

P
(s

)

L=1024
0.25 s

-1.2

Figure 4.5: Asymptotic scaling in the 2D BTW model. Shown are unbinned data for L=1024
and a straight line for comparison. Figure 4.6 shows additional asymptotically decaying effects
at very small s.

15

10
0

10
1

10
2

s

10
-4

10
-3

10
-2

10
-1

10
0

P
(s

)

L=1024

10
0

10
1

s

10
-2

10
-1

10
0

P
(s

)

L=1024
0.13 s

-1.05

Figure 4.6: Asymptotic preference patterns for certain avalanche sizes in the 1D Oslo (left)
and 2D BTW models for a total of 107 avalanches. Shown are unbinned data for L=1024 and a
straight line for comparison for the 2D BTW model results. This effect in the 2D BTW model
is the result of a weak preference for even s in non-dissipative avalanches and a stronger, more
irregular pattern in dissipative avalanches. Due to the small fraction of dissipative avalanches at
small s, the pattern of non-dissipative avalanches clearly dominates. The larger effect in the 1D
Oslo model can also be observed when finding the slope of P (s) (see Figure 5.2).

The origin of this effect is unclear and could form part of a further investigation
into the system behaviour at small s. Both numerical results and DDRG calculations
therefore suggest that the small scale cut-off is a significant element of the scaling
behaviour for all computable system sizes. Rather than a perturbation restricted to
very small s, the observations are consistent with this small scale cut-off being an
asymptotic approach of the dynamics to scale-invariance.

4.3 Dissipative and non-dissipative avalanches

A distinction in the behaviour of avalanches that dissipate energy at the boundaries
during their propagation and those that do not has been suggested by DeMenech et al.
for the 2D BTW model [47] and has been investigated in more detail by Drossel [48].
Both attribute numerically observed breakdown of finite size scaling (FSS) to this, but
its exact role in the scaling behaviour of the BTW model is still unclear. The observed
lower slope of dissipating avalanches can be understood from a simple random walk
argument describing the probability of an avalanche of size s to reach the boundary. A
recent numerical study points out a deviation from FSS in in the distribution of non-
dissipative avalanches [38], supporting the view that any difference in the behaviour of
dissipative and non-dissipative avalanches does not represent the fundamental cause
for the breakdown of FSS.

4.4 Implications of theoretical results

Due to the cut-off effects at both small and large s, the region in which P (s) displays
its true scaling behaviour is smaller than simple inspection suggests. In particular at
small L, the asymptotic scaling effect is still significant up to the large s cut-off region,

16

so the true system behaviour cannot be observed. With increasing L, a region where
neither effect is significant is recovered and the peak in the slope histogram is expected
to narrow. Observations of the approach of τs,L to τs,∞ will be influenced by this, as
the measured value for τs,L only gradually approaches the true exponent corresponding
to the respective system size.

This gradual approach cannot be expected to follow FSS and hence FSS would not
be expected to be observable at small system sizes, irrespective of its general validity
for the model. The multifractal behaviour of the BTW model described by other
investigators [47, 49] could be influenced by such a transient effect. However, their
results as well as the numerical results presented here for larger systems support a
more fundamental violation of FSS. The finite size scaling assumption

τs,L = τs,∞ −
const.

logL
(4.6)

first proposed by Manna [50] is based on an empirical argument and allows to find τs,∞
by a linear extrapolation of τs,L against 1

logL to infinite system size, i.e. 1
logL → 0. In

the context of the above considerations, such a linear extrapolation cannot be used to
reliably determine τs,∞.

17

18

5 Numerical Results

5.1 Results for P (s)

Numerical work was focussed on determining τs for the BTW and Oslo model. For
each of the models P (s) and the corresponding local slope is shown. The same scale
is used for all plots of P (s) to allow direct comparison. The plot of the local slope
then shows any deviation from pure power law behaviour in more detail and allows a
fast and reliable method of measuring the value of the slope. Histograms of the slope
values were used to help calculate τs values.

5.1.1 1D Oslo

This model was examined under two sets of conditions. The first set, used by Chris-
tensen et al. [26], has one dissipative boundary and sand is added at the opposite,
non-dissipative boundary. The plots for this system show very little variation for the
different system sizes other than the large s cut-off, which scales with L2 (see Figure
5.1). The results indicate τs = 1.55±0.02, consistent with the values presented in [26].

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=64
L=128
L=512
L=1024

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

s

-1.75

-1.65

-1.55

-1.45

-1.35

-1.25

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=64
L=128
L=512
L=1024

Figure 5.1: Binned size distribution and corresponding local slope for the edge driven 1D Oslo
model with one dissipative and one conserving boundary.

Using dissipating boundaries and bulk driving the results obtained are markedly
different. The obtained values of τs for different system sizes L, τs,L, show strong
variations with L (see Table 5.1). Figure 5.3 shows that the data do not follow FSS
for the system sizes calculated and hence equation 4.6 cannot be used to extrapolate
to τs,∞.

19

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=128
L=256
L=512
L=1024
L=2048

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

s

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=128
L=256
L=512
L=1024
L=2048

Figure 5.2: Binned size distribution and corresponding local slope for the bulk driven 1D Oslo
model with dissipative boundaries.

L τs,L No. of avalanches

64 0.790±0.020 107

128 0.825±0.020 107

256 0.860±0.015 107

512 0.885±0.015 107

1024 0.910±0.010 107

2048 0.935±0.005 107

Table 5.1: τs,L values for 1D Oslo model with dissipative boundaries and bulk driving.

Also plotted is the variation of τs,L with L on a semi-log plot which suggests a
relationship of the form

τs ∝ logL . (5.1)

0.00 0.10 0.20 0.30 0.40 0.50 0.60
1/log(L)

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

τ s

10 100 1000 10000
L

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

τ s

Figure 5.3: Scaling of τs with system size for 1D Oslo model with dissipative boundaries and
bulk driving.

20

5.1.2 2D BTW

For the largest system sizes, the plot appears to suddenly bend, which is most clearly
seen in the histogram of slope values (see Figure 5.5). The two peaks in the histogram
can be seen to correspond to two separate regions in the plot of the local slopes (see
Figure 5.4).

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=128
L=256
L=512
L=1024
L=2048

10
0

10
1

10
2

10
3

10
4

10
5

10
6

s

-1.20

-1.15

-1.10

-1.05

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=128
L=256
L=512
L=1024
L=2048

Figure 5.4: Binned size distribution and corresponding local slope for the 2D BTW model.

-1.3 -1.2 -1.1 -1.0
d(log P(s))/d(log s)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

W
ei

gh
te

d
fr

eq
ue

nc
y

Figure 5.5: Histogram for 2D BTW model with L = 2048 showing two distinct slope values.

Because of this effect, two values for τs,L are listed in Table 5.2. The first is a
central value, corresponding to measuring an average slope. The value for the steeper
region is also given, assuming that the flatter region is due to a large s finite size effect.
Thereby, the steeper region would represent the true scaling of the system.

The central values for τs,L appear to follow FSS. Extrapolation to an infinite size
lattice gives τs,∞ ≈ 1.22 (see Figure 5.6). This value is in agreement with other pub-
lished results that assume FSS [50, 51]. Performing the same analysis on the lower
values yields τs,∞ ≈ 1.25. However, the fit for these values appears to include sys-
tematic variations (see Figure 5.7). Equation 5.1 again seems to provide a better
description for the scaling of τs,L.

21

L τs,L (central) τs,L (lower) No. of avalanches

64 1.07±0.05 107

96 1.085±0.015 107

128 1.090±0.010 107

192 1.101±0.003 107

256 1.107±0.005 107

384 1.110±0.010 1.120 ±0.010 107

512 1.120±0.015 1.125 ±0.010 107

1024 1.135±0.015 1.140 ±0.010 107

1536 1.135±0.020 1.148 ±0.010 107

2048 1.14±0.03 1.155 ±0.010 107

Table 5.2: 2D BTW τs,L values.

0.00 0.10 0.20 0.30 0.40 0.50 0.60
1/log(L)

-1.30

-1.25

-1.20

-1.15

-1.10

-1.05

-1.00

τ s

10 100 1000 10000
L

-1.20

-1.15

-1.10

-1.05

τ s

Figure 5.6: Scaling of the central values of τs,L with L for 2D BTW model.

0.00 0.10 0.20 0.30 0.40 0.50 0.60
1/log(L)

-1.30

-1.25

-1.20

-1.15

-1.10

-1.05

-1.00

τ s

10 100 1000 10000
L

-1.20

-1.15

-1.10

-1.05

τ s

Figure 5.7: Scaling of τs,L with L for 2D BTW model using lower values where available (square
symbols) or central values (circles).

Preliminary analysis has been performed on dissipative and non-dissipative ava-
lanches. These results seem to show that, when considered separately, the values of
τs,L for these avalanches do not scale as strongly as their combined values. For dissipat-
ing avalanches τs,∞ ≈ 0.78 and for non-dissipating τs,∞ ≈ 1.18. Systems of L ≤ 2048
were evaluated, but it is stressed that these results are based on only 106 avalanches.

22

5.1.3 2D Oslo

The distribution of avalanche sizes in the Oslo model in two dimensions is similar to
the edge driven 1D Oslo model with one conserving boundary. The values of τs,L are
much less dependent on system size and, within error, are consistent with a constant
τs for all system sizes.

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=128
L=256
L=512
L=1024
L=2048

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=128
L=256
L=512
L=1024
L=2048

Figure 5.8: Binned size distribution and corresponding local slope for the 2D Oslo model.

L τs,L No. of avalanches

128 1.26±0.05 107

256 1.26±0.02 107

512 1.27±0.02 107

768 1.26±0.02 107

1024 1.26±0.02 107

1536 1.26±0.02 7× 106

2048 1.265±0.01 9× 106

Table 5.3: 2D Oslo τs,L values.

5.1.4 3D BTW

Due to memory constraints, only systems with a relatively small linear extent could be
calculated. Consequently the values of τs,L are difficult to determine accurately, giving
the large errors listed in Table 5.4. No extrapolation to τs,∞ was attempted due to
these restrictions. The values obtained are consistent with previously published values
of τs,256 = 1.33 [52], τs,80 = 1.34 [23] and τs,20 = 1.35 [2].

L τs,L No. of avalanches

64 1.35±0.05 107

128 1.34±0.04 107

256 1.33±0.03 107

Table 5.4: 3D BTW τs,L values.

23

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=64
L=128
L=256

10
0

10
1

10
2

10
3

10
4

10
5

10
6

s

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=64
L=128
L=256

Figure 5.9: Binned size distribution and corresponding local slope for the 3D BTW model.

5.1.5 3D Oslo

The restriction on systen size again prevents an accurate measurement of τs,L. Within
these limits, both systems in three dimensions display very similar properties.

10
0

10
2

10
4

10
6

10
8

10
10

s

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
(s

)

L=64
L=128
L=256

10
0

10
1

10
2

10
3

10
4

10
5

10
6

s

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

d(
lo

g
P

(s
))

/d
(lo

g
s)

L=64
L=128
L=256

Figure 5.10: Binned size distribution and corresponding local slope for the 3D Oslo model.

L τs,L No. of avalanches

64 1.35±0.1 107

128 1.40±0.1 107

256 1.40±0.08 107

Table 5.5: 3D Oslo τs,L values.

5.2 Structure of avalanches

Figures 5.11 and 5.12 show the progression of avalanches with time for the bulk driven
1D Oslo model with dissipative boundary conditions and the 2D BTW model, respec-
tively. Figure 5.11 shows one dissipative and one non-dissipative avalanche, both with
frequent multiple topplings. The plots clearly show self-similar patterns. However,
the structure of avalanches in the 2D BTW is known to deviate from that of a simple
fractal due the effect of ‘aging’ in the propagating avalanche [36, 41].

24

Figure 5.11: A dissipating (left) and a non-dissipating (right) avalanche of size s ≈ 100000
in the bulk driven 1D Oslo model with dissipative boudary conditions for L = 512. The large
number of multiple topplings can be clearly seen.

25

0

128
x

0

128

y

0

200

400

t

0

128
x

Figure 5.12: Example of the structure of an avalanche in the 2D BTW model. The avalanche
contains s ≈ 12000 topplings on a lattice of L = 128 and self-similar patterns are evident. Figure
4.1 shows the number of topplings at each site for this avalanche.

26

6 Discussion

In the analysis of P (s) for the 2D BTW model, an unexpected second power law region
is observed. This region is flatter and can be thought of as a cut-off, similar to the
upward curved cut-off in the 1D Oslo model. This interpretation is supported by the
observation that the onset of this flatter region moves to larger s proportional to L2.
Considering the contributions of dissipative and non-dissipative avalanches to P (s)
separately, it appears that the onset of the flatter region coincides with the point at
which the fraction of dissipative avalanches becomes significant. However, the exact
nature of the observed ‘bend’ in the distribution cannot easily be justified and will
require further knowledge of the individual scaling behaviours of these two avalanche
classes. For the Zhang model [15], a similar bend in P (s) has been observed [53]. Here,
the effect is observed as an apparent broadening of the peak in the slope histogram,
apparently consistent with the multifractality proposed by Tebaldi et al. [49]. For
large systems and good statistics, the broad peak can be resolved as a double peak
(see Figure 5.5). Inspection of the plots of the local slope against s (see Figure 5.4)
confirm that these peaks correspond to two distinct power law regions.

The expected asymptotic scaling is clearly observed for P (s) in all models. Follow-
ing the argument given in Section 4.2, a model in which the elementary dynamics are
closer to the asymptotic dynamics should display much weaker deviation from τs,L at
small s. It should thus be possible to construct a model in which these dynamics differ
minimally using stochastic rules for the number of grains distributed in a toppling at
the smallest scale. In such a model, the scaling of P (s) due to other scale-dependent
effects could be observed more easily and reliable extrapolation of the behaviour would
be possible from smaller L and thus with significantly reduced computational effort.

The strong proportionality to logL observed for the values of τs,L in the bulk driven
1D Oslo model with dissipative boundary conditions and the 2D BTW model is un-
expected and raises fundamental questions in attempts to interpret it. An indefinite
drop of τs,L cannot be reconciled with SOC, as for τs,L > 2, P (s) would have a finite
first moment for infinite system sizes. An end of the logL proportionality might thus
be expected, but no indication of this is seen at the available system sizes. These
findings do not support any classification of the universality of the models displaying
this behaviour based on numerical results. The possible universality of the Oslo model
in two dimensions and the 2D BTW model pointed to by FSS analysis can therefore
not be confirmed or excluded. Any connection of this observation to a similar re-
stricted logL proportionality of fractal dimensions in other systems [54, 55] has not
been investigated.

In the 1D Oslo model, this logL dependence is found only for purely dissipative
boundary conditions and bulk driving, whereas the original edge driven configuration

27

shows an independence of L in its scaling, as does the 2D Oslo model. This under-
lines the significance of the boundary and driving conditions at least for this model,
although SOC occurs for both configurations and an interpretation of the conditions
as ‘tuning’ can therefore not apply. Differences between bulk driving and edge driving
have recently been discussed on the basis of changes in the power spectrum of the
temporal fluctuations of the average slope [56].

The 1D Oslo model also differs from the corresponding physical experiment. SOC
has been observed in a pile of long-grain rice with one open boundary [14], but the
experimental exponent was determined to be slightly above 2 and thus significantly
larger than the value of τs = 1.55± 0.02 determined here and in previous work [26,57]
for the model. A physically occuring effect not included in the computational Oslo
model is the ‘jumping’ of toppling grains observed in the rice pile. In this, a grain
directed ‘downhill’ does not fall on the nearest neighbour of the toppling site but
chooses a single site in its direction at random within a certain range. Essentially, this
is a variation of the nonlocal rules first proposed by Kadanoff et al. [58–60]. Further
work on this is justified as any extension to the 1D Oslo model reconciling physical
and computational results may be a useful step to understanding SOC in real systems.

28

7 Conclusion

In this report we have investigated the scaling behaviour of the probability distribution
of the number of of topplings P (s) of the BTW and Oslo models in up to three
dimensions. The extent of the data gathered exceeds that of published work and
allows unexpected features of the scaling to be observed in some systems. For the
2D BTW model and the edge driven 1D Oslo model with one conserving boundary,
the values of τs,∞ in previous work can be recovered if analysis methods based on a
finite size scaling approach are applied. However, the previously described breakdown
of FSS is confirmed by the observation, invalidating these results. As part of this
breakdown in the 2D BTW model, two distinct power law regions are observed for
P (s) and tentatively attributed to differences in the scaling behaviours of dissipative
and non-dissipative avalanches.

The result of proportionality to logL of the values of τs,L in the bulk driven 1D
Oslo model and steeper of the two regions in the 2D BTW model does not support the
existence of a limiting value of τs for infinite system sizes. Further data for larger system
sizes would be essential to confirm any restriction of the proposed proportionality to
small L and thus attribute it to finite size effects. We also show invariance of τs,L with
L for two sytems. Both the bulk driven two dimensional Oslo model with dissipative
boundaries and the one dimensional version with edge driving and one conserving
boundary do not display measurable scaling of τs,L. The available data does not allow
conclusions on the scaling behaviour for the three dimensional systems studied.

At small s, the scale-dependence of system dynamics has been observed numerically
in the asymptotic approach of the slope of P (s) to τs,L in all models. The presented
fast approximation to the DDRG description of the dynamics in the 2D BTW model
correctly reproduces this behaviour in its trajectory towards the fixed point. Further
work on this effect could include the construction of a model with invariant behaviour
on all scales, and thus necessarily stochastic rules.

Our results underline the influence of finite size effects at both small and large
scales on the obtainable results for τs. It cannot be concluded whether these effects
are the cause of the observed scaling behaviour or just partly obscure more fundamental
mechanisms.

29

30

Acknowledgements

It is a pleasure to thank Dr. Kim Christensen for helpful discussions and encouragement
throughout the project. We are grateful to Prof. Henrik Jeldtoft Jensen and Dr. Maya
Paczuski for useful comments and insights. We also thank the Condensed Matter
Theory Group at Imperial College for the provision of extensive computing facilities
and notably Prof. Angus MacKinnon for technical advice.

31

32

Bibliography

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1998).

[3] P. Bak, in How Nature Works (Springer-Verlag, New York, 1996).

[4] H. J. Jensen, in Self-Organized Criticality (Cambridge University Press, Cam-
bridge, 1998).

[5] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).

[6] P. Bak, K. Chen, and C. Tang, Phys. Lett. A 147, 297 (1990).

[7] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992).

[8] S. Field, J. Witt, F. Nori, and X. S. Ling, Phys. Rev. Lett. 74, 1206 (1995).

[9] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).

[10] A. Malthe-Sørenssen, Ph.D. thesis, University of Oslo, Norway, 1998.

[11] H. M. Jaeger, C. Liu, and S. R. Nagel, Phys. Rev. Lett. 62, 40 (1989).

[12] G. A. Held, D. H. Solina, H. Solina, D. T. Keane, W. J. Haag, P. M. Horn, and
G. Grinstein, Phys. Rev. Lett. 65, 1120 (1990).

[13] J. Rosendahl, M. Vekić, and J. Kelly, Phys. Rev. E 47, 1401 (1993).

[14] V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, and P.
Meakin, Nature 379, 49 (1996).

[15] Y. C. Zhang, Phys. Rev. Lett. 63, 470 (1989).

[16] S. S. Manna, J. Phys. A 24, L363 (1991).

[17] L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett. 72, 1690 (1994).

[18] A. Vespignani, S. Zapperi, and L. Pietronero, Phys. Rev. E 51, 1711 (1995).

[19] H. J. Jensen, Europhys. Lett. 35, 397 (1996).

[20] A. Dı́az-Guilera, Phys. Rev. A 45, 8551 (1992).

[21] A. Corral and A. Dı́az-Guilera, Phys. Rev. E 55, 2434 (1997).

[22] S. Lübeck, Phys. Rev. E 56, 1590 (1997).

33

[23] S. D. Edney, P. A. Robinson, and D. Chisholm, Phys. Rev. E 58, 5395 (1998).

[24] E. Milshtein, O. Biham, and S. Solomon, Phys. Rev. E 58, 303 (1998).

[25] A. Ben-Hur and O. Biham, Phys. Rev. E 53, R1317 (1996).

[26] K. Christensen, A. Corral, V. Frette, J. Feder, and T. Jøssang, Phys. Rev. Lett.
77, 107 (1996).

[27] S. S. Manna, Curr. Sci. 77, 388 (1999).

[28] W. H. Press, S. A. Teuklosky, W. T. Vetterling, and B. P. Flannery, in Numerical
Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992), Chap. 7,
pp. 280–282.

[29] W. H. Press, S. A. Teuklosky, W. T. Vetterling, and B. P. Flannery, in Numerical
Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, 1992), Chap. 8,
pp. 336–338.

[30] D. Dhar, Phys. Rev. Lett. 64, 1613 (1990).

[31] S. N. Majumdar and D. Dhar, J. Phys. A 24, L357 (1991).

[32] V. B. Priezzhev, J. Stat. Phys. 74, 955 (1994).

[33] E. V. Ivashkevich, J. Phys. A 27, 3643 (1994).

[34] D. Dhar and S. S. Manna, Phys. Rev. E 49, 2684 (1994).

[35] V. B. Priezzhev, D. V. Ktitarev, and E. V. Ivashkevich, Phys. Rev. Lett. 76, 2093
(1996).

[36] M. Paczuski and S. Boettcher, Phys. Rev. E 56, 3745 (1997).

[37] D. V. Ktitarev and V. B. Priezzhev, Phys. Rev. E 58, 2883 (1998).

[38] D. V. Ktitarev, S. Lübeck, P. Grassberger, and V. B. Priezzhev, Phys. Rev. E 61,
81 (2000).

[39] K. Christensen and Z. Olami, Phys. Rev. E 48, 3361 (1993).

[40] L. Pietronero and W. R. Schneider, Phys. Rev. Lett. 66, 2336 (1991).

[41] S. Boettcher and M. Paczuski, Phys. Rev. Lett. 79, 889 (1997).

[42] P. Grassberger and S. S. Manna, J. Phys. (Paris) 63, 1077 (1990).

[43] L. Pietronero, P. Tartaglia, and Y.-C. Zhang, Physica A 173, 22 (1991).

[44] E. V. Ivashkevich, A. M. Povolotsky, A. Vespignani, and S. Zapperi, Phys. Rev.
E 60, 1239 (1999).

[45] Y. Moreno, J. B. Gómez, and A. F. Pacheco, Phys. Rev. E 60, 7565 (1999).

[46] D. Dhar and S. N. Majumdar, J. Phys. A 23, 4333 (1990).

[47] M. D. Menech, A. L. Stella, and C. Tebaldi, Phys. Rev. E 58, 2677 (1998).

34

[48] B. Drossel, cond-mat/9904075 (1999).

[49] C. Tebaldi, M. D. Menech, and A. L. Stella, Phys. Rev. Lett. 83, 3952 (1999).

[50] S. S. Manna, Physica A 179, 249 (1991).

[51] S. Lübeck and K. D. Usadel, Phys. Rev. E 55, 4095 (1997).

[52] S. Lübeck and K. D. Usadel, Phys. Rev. E 56, 5138 (1997).

[53] E. Milshtein, O. Biham, and S. Solomon, Phys. Rev. E 58, 303 (1998).

[54] K. Chen and P. Bak, cond-mat/9912417 v2 (2000).

[55] P. Bak and K. Chen, astro-ph/0001443 (2000).

[56] S. D. Zhang, cond-mat/0002270 (2000).

[57] L. A. N. Amaral and K. B. Lauritsen, Physica A 231, 608 (1996).

[58] L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou, Phys. Rev. A 39, 6524 (1989).

[59] L. A. N. Amaral and K. B. Lauritsen, Phys. Rev. E 56, 231 (1997).

[60] M. Markošová, Phys. Rev. E 61, 253 (2000).

35

36

Appendices

37

38

A Overview of Simulation Code

A.1 Program structure

The program uses two classes to implement the sandpile and the queue of critical sites.
The data within the two classes are kept as private variables, with member functions
providing access to the required variables. The structure of the program is shown in
Figure A.1.

The first stage of the program involves generating the classes and their required vari-
ables. Globals.h contains all variables with global scope. Sandpile.h and Queue.h

contain variables which can be accessed by any function in the classes CSandpile and
CQueue, respectively. Finally, any variables which are only used within a particular
function are declared within that function.

The sandpile array is initialised with random slopes between 0 and zc−1. The slope
is then increased by 1 at a random location and any resulting avalanche is allowed to
finish propagating before the next addition. The avalanche propagation is dealt with
by a queuing system, explained in detail in section 3.1.2. Results are only recorded
after the system reaches the stationary state (see section 3.1.1).

As the queue size is restricted, there is the possibility of active data being over-
written when ‘wrapping around’, i.e. sites that have not yet relaxed being replaced in
the queue by new sites. There is no easy way to calculate the size of queue required
to prevent this from happening, so a check is performed such that if active data is
about to be overwritten, an error message is given and the program stops. A complete
description is available only for those avalanches with a size up to the length of the
queue.

The program uses virtual memory to store the size and duration of very large
avalanches. This is described in section 3.1.4.

A.2 Known limitations

The code cannot address arrays larger than ≈ 100 Mbytes, which is required for a 3D
system with L ≥ 512, or a 2D system with L ≥ 8192. A possible workaround would
be to split the arrays into two or more smaller sections. A better solution would be to
write a class to handle large arrays using a different memory addressing technique.

If the code is compiled on a machine using an OS other than UNIX or Win32, the
code will default to UNIX file handling commands which may result in errors.

39

Figure A.1: Function dependency

40

B Simulation Code

#ifndef __GLOBALS_HEADER

#define __GLOBALS_HEADER

// required header files

#include <iostream.h>

#include <fstream.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <sys/timeb.h>

#include <sys/types.h>

#include <sys/stat.h>

// define boolean type and UNIX include files

#ifdef WIN32

#include <direct.h>

#include <windows.h>

#include <conio.h>

#else

#include <unistd.h>

#define BOOL int

#define TRUE 1

#define FALSE 0

#endif

// Required definitions for ran2 random number generator

#define IM1 2147483563

#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IM1-1)

#define IA1 40014

#define IA2 40692

#define IQ1 53668

#define IQ2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS 0.00000012 // 1.2e-7

#define RNMX (1.0-EPS)

// define classes

typedef class CQueue *PQueue;

typedef class CSandpile *PSandpile;

// define data structures

struct SAvInfo

{

int pos;

int time;

};

// define global functions

41

double ran2(long *);

const int sampleTime=10000;

// header files required for queue and sandpile classes

#include "Queue.h"

#include "Sandpile.h"

#endif // __GLOBALS_HEADER

#include "Globals.h"

int main()

{

PSandpile sandpile = new CSandpile(); // create sandpile

sandpile->init_arrays(); // initialise all arrays

sandpile->go(); // start calculation loop

if (sandpile)

{

delete sandpile; // tidy up

sandpile = NULL;

}

return 0;

}

// Random number generator ran2

// from ’Numerical Recipes in C (2nd ed.)’, p. 282

// Calculates a float from 0 to 1 exclusive

double ran2(long *idum)

{

int j;

long k;

static long idum2=123456789;

static long iy=0;

static long iv[NTAB];

double temp;

if (*idum<=0)

{

if (-(*idum)<1) *idum=1;

else *idum=-(*idum);

idum2=(*idum);

for (j=NTAB+7;j>=0;j--)

{

k=(*idum)/IQ1;

idum=IA1(*idum-k*IQ1)-k*IR1;

if (*idum<0) *idum+=IM1;

if (j<NTAB) iv[j]=*idum;

}

iy=iv[0];

}

k=(*idum)/IQ1;

idum=IA1(*idum-k*IQ1)-k*IR1;

if (*idum<0) *idum+=IM1;

k=idum2/IQ2;

idum2=IA2*(idum2-k*IQ2)-k*IR2;

if (idum2<0) idum2+=IM2;

j=iy/NDIV;

iy=iv[j]-idum2;

iv[j]=*idum;

if (iy<1) iy+=IMM1;

if ((temp=AM*iy) >RNMX)

return RNMX;

else return temp;

}

42

#ifndef __SANDPILE_HEADER

#define __SANDPILE_HEADER

#include "Globals.h"

// Declares all variables with scope of CSandpile, and

// declares function prototypes

class CSandpile

{

private:

int maxRad, *rad_data;

int maxAvSize, *dur_data, *size_data, *prf_data, *largeav_data;

int *dur_data_d, *dur_data_nd, *size_data_d, *size_data_nd, *largeav_data_d, *largeav_data_nd;

SFracInfo *boxInfo, *planeInfo;

CQueue *queue;

char *zc, *z;

int *coord;

int maxGrains, *remainder;

int L;

int dimension;

int zcMinRelax;

int lPow;

int systemSize;

int maxProfiles, sizeToProfile;

int totalAv, maxAv;

int output_percent;

unsigned long largeav_count, largeav_count_d, largeav_count_nd;

BOOL btw, oslo, rad_flag, dur_flag, branch_flag, corneradd_flag, open_corner_flag, avz_flag;

BOOL dissipating;

unsigned int startTime, endTime;

double totalBranch, *branch_ratio_d, *branch_ratio_nd;

int totalTime;

int timeCounter;

long seed;

ofstream size_out, dur_out, rad_out, avz_out, prf_out, misc_out, pile_out;

ofstream dur_out_d, dur_out_nd, largeav_out_d, largeav_out_nd, size_out_d, size_out_nd;

public:

CSandpile();

~CSandpile();

void read_init_file();

void init_outfiles();

void init_arrays();

inline BOOL calc_avalanche();

inline void relax(SAvInfo &aI);

inline BOOL check_avz();

inline void calc_results();

inline double calc_radius();

inline void calc_branch();

inline int intpow(int, int);

void output_profile(SAvInfo &aI);

void combine_results(int);

void output_results(int);

void hpsort(unsigned long, int []);

inline void components(int x);

void go();

};

43

#endif // __SANDPILE_HEADER

#include "Sandpile.h"

// CSandpile constructor. Initialises variables and arrays used

CSandpile::CSandpile()

{

output_percent=0;

cout << "Reading parameter file" << endl;

read_init_file();

cout << dimension << "D\t L=" << L << endl;

seed = -(long)time(NULL);

startTime = (unsigned)time(NULL);

zcMinRelax=2*dimension;

maxAvSize=1000000;

systemSize=intpow(L,dimension);

largeav_count=largeav_count_d=largeav_count_nd=0;

slicesCount=0;

timeCounter=0;

cout << "Initialising output files" << endl;

init_outfiles();

}

// CSandpile destructor. Deletes arrays and returns memory to heap

CSandpile::~CSandpile()

{

if (z)

{

delete [] z;

z = NULL;

}

if (rad_flag)

{

delete [] rad_data;

rad_data = NULL;

}

if (size_data)

{

delete [] size_data_d;

delete [] size_data_nd;

size_data = NULL;

}

if (dur_flag)

{

delete [] dur_data;

dur_data = NULL;

}

if (branch_flag)

{

delete [] prf_data;

prf_data = NULL;

}

if (queue)

{

delete [] queue;

queue = NULL;

}

if (zc)

{

delete [] zc;

zc = NULL;

}

if (remainder)

{

delete [] remainder;

remainder = NULL;

}

}

44

// Reads in run parameters from initialisation file

void CSandpile::read_init_file()

{

char descriptor[30];

ifstream in("parameters.txt", ios::nocreate);

#ifdef WIN32

if(!in.is_open()) // not available in UNIX c++

{

cerr << "Input file not found" << endl;

exit(1);

}

#endif

if (!in.eof())

in >> descriptor >> dimension;

if (!in.eof())

in >> descriptor >> L;

if (!in.eof())

in >> descriptor >> maxAv;

if (!in.eof())

in >> descriptor >> btw;

if (!in.eof())

in >> descriptor >> oslo;

if (!in.eof())

in >> descriptor >> rad_flag;

if (!in.eof())

in >> descriptor >> dur_flag;

if (!in.eof())

in >> descriptor >> branch_flag;

if (!in.eof())

in >> descriptor >> open_corner_flag;

if (!in.eof())

in >> descriptor >> corneradd_flag;

if (!in.eof())

in >> descriptor >> maxProfiles;

if (!in.eof())

in >> descriptor >> sizeToProfile;

if (!in.eof())

in >> descriptor >> avz_flag;

if (!in.eof())

in >> descriptor >> output_percent;

if ((output_percent<0)||(output_profile>100))

output_percent=100;

}

// Opens output files ready for results. Also creates a new folder

// to store the files in

void CSandpile::init_outfiles()

{

time_t timer;

#ifdef WIN32

struct _stat dummybuf;

int n=0, sign, decptr;

char descriptor[30];

strcpy(descriptor,ecvt(dimension,1,&sign,&decptr));

strcat(descriptor,"D");

if (_stat(descriptor,&dummybuf)!=0)

_mkdir(descriptor);

_chdir(descriptor);

if (btw)

strcpy(descriptor,"BTW");

else

{

if (oslo)

strcpy(descriptor,"Oslo");

else

45

strcpy(descriptor,"MaxRandom");

}

if (_stat(descriptor,&dummybuf)!=0)

_mkdir(descriptor);

_chdir(descriptor);

do

{

n++;

strcpy(descriptor,"Run_");

strcat(descriptor,ecvt(n,1,&sign,&decptr));

}while(_stat(descriptor,&dummybuf)==0);

strcpy(descriptor,"Run_");

// create output directory

mkdir(strcat(descriptor,ecvt(n,1,&sign,&decptr)));

// change working directory

chdir(descriptor);

cout << descriptor << " Folder created" << endl;

#else

struct stat dummybuf;

int n=0, sign, decptr;

char descriptor[30];

strcpy(descriptor,ecvt(dimension,1,&sign,&decptr));

strcat(descriptor,"D");

if (stat(descriptor,&dummybuf)!=0)

mkdir(descriptor,0777);

chdir(descriptor);

if (btw)

strcpy(descriptor,"BTW");

else

{

if (oslo)

strcpy(descriptor,"Oslo");

else

strcpy(descriptor,"MaxRandom");

}

if (stat(descriptor,&dummybuf)!=0)

mkdir(descriptor,0777);

chdir(descriptor);

do

{

n++;

strcpy(descriptor,"Run_");

strcat(descriptor,ecvt(n,1,&sign,&decptr));

}while(stat(descriptor,&dummybuf)==0);

strcpy(descriptor,"Run_");

// create output directory

mkdir(strcat(descriptor,ecvt(n,1,&sign,&decptr)),0777);

// change working directory

chdir(descriptor);

cout << descriptor << " Folder created" << endl;

#endif

if(branch_flag)

prf_out.open("profiles");

avz_out.open("avz");

// pile_out.open("pile");

misc_out.open("misc");

largeav_out_d.open("largeavD");

largeav_out_nd.open("largeavND");

timer=time(NULL);

46

misc_out << ctime(&timer) << endl;

misc_out << "Dimension = " << dimension << endl;

misc_out << "L = " << L << endl;

misc_out << "maxAv = " << maxAv << endl;

misc_out << "btw = " << btw << endl;

misc_out << "oslo = " << oslo << endl;

misc_out << "rad_flag = " << rad_flag << endl;

misc_out << "dur_flag = " << dur_flag << endl;

misc_out << "branch_flag = " << branch_flag << endl;

misc_out << "open_corner_flag = " << open_corner_flag << endl;

misc_out << "corneradd_flag = " << corneradd_flag << endl;

misc_out << "maxProfiles = " << maxProfiles << endl;

misc_out << "sizeToProfile = " << sizeToProfile << endl;

misc_out << "avz_flag = " << avz_flag << endl;

}

// sets initial values for array elements

void CSandpile::init_arrays()

{

cout << "Initialising arrays" << endl;

z = new char[systemSize];

zc = new char[systemSize];

queue = new CQueue(maxAvSize);

size_data_d = new int[maxAvSize];

size_data_nd = new int[maxAvSize];

remainder = new int[dimension+1];

coord = new int[dimension];

int i;

if(dur_flag)

dur_data = new int[maxAvSize];

if(rad_flag)

{

maxRad = L*dimension;

rad_data = new int[maxRad];

}

if(branch_flag)

{

prf_data = new int[maxAvSize];

branch_ratio_d = new double[20];

branch_ratio_nd = new double[20];

totalTime=0;

totalBranch=0.0;

}

for (i=0; i<maxAvSize; i++)

{

size_data_d[i] = 0;

size_data_nd[i] = 0;

}

if(dur_flag)

{

for (i=0; i<maxAvSize; i++)

dur_data[i] = 0;

}

if(rad_flag)

{

for (i=0; i<maxRad; i++)

rad_data[i] = 0;

}

for (i=0; i<systemSize; i++)

{

if(btw)

47

zc[i]=zcMinRelax;

else

{

if(oslo)

zc[i]= int(ran2(&seed)*2)+zcMinRelax;

else

zc[i]= int(ran2(&seed)*dimension*2)+zcMinRelax;

}

z[i] = int(ran2(&seed)*(zc[i]-1)+1);

}

cout << "Initialising sandpile..." << endl;

}

// main calculation loop

void CSandpile::go()

{

BOOL takeData = FALSE, avalanche;

totalAv=1;

static int initCtr=0;

static int outnum=maxAv/(100/output_percent);

static int percent=maxAv/100;

while(totalAv<=maxAv)

{

dissipating = FALSE;

avalanche = calc_avalanche();

initCtr++;

if(!takeData)

{

if(initCtr%1000==0)

{

cout << initCtr << " grains calculated" << endl; // output progression to screen

takeData = check_avz(); // checks whether to take data

}

}

if (takeData && avalanche)

{

if(avz_flag)

takeData = check_avz();

calc_results();

totalAv++;

if(totalAv%percent==0)

cout << totalAv/percent << " % Done" << endl;

if(totalAv%outnum==0)

{

output_results(totalAv);

misc_out << totalAv/percent << "% Completed" << endl;

}

}

}

}

// calculates vector position from array position

void CSandpile::components(int x)

{

remainder[0]=x;

for(int n=0; n<dimension; n++)

{

lPow = intpow(L, (dimension-(n+1)));

coord[dimension-(n+1)]=remainder[n]/lPow;

remainder[n+1]=remainder[n]%lPow;

}

}

// calc_avalanche() together with relax() add sand to the pile and

// calculate the progression of any resultant avalanche

BOOL CSandpile::calc_avalanche()

{

48

SAvInfo avInfo;

queue->clear();

BOOL avalanche = FALSE;

if(corneradd_flag)

avInfo.pos = 0;

else

avInfo.pos = int(ran2(&seed) * systemSize);

avInfo.time = 0;

queue->push(avInfo);

z[avInfo.pos]++;

timeCounter++;

while (!queue->isEmpty())

{

avInfo = queue->pop();

if (z[avInfo.pos] >= zc[avInfo.pos])

{

relax(avInfo);

timeCounter++;

avalanche = TRUE;

}

}

return avalanche;

}

// calculates additions to nearest neighbours and pushes

// critical sites onto queue

void CSandpile::relax(SAvInfo &aI)

{

SAvInfo avInfo = aI;

int x=avInfo.pos;

avInfo.time++;

remainder[0]=x;

z[x]-=2*dimension;

for(int n=0; n<dimension; n++)

{

lPow = intpow(L, (dimension-(n+1)));

if(remainder[n]/lPow > 0)

{

z[x-lPow]++;

if (z[x-lPow]==zc[x-lPow])

{

avInfo.pos = x-lPow;

queue->push(avInfo);

}

}

else

dissipating=TRUE;

if(remainder[n]/lPow < L-1)

{

z[x+lPow]++;

if (z[x+lPow]==zc[x+lPow])

{

avInfo.pos=x+lPow;

queue->push(avInfo);

}

}

else

dissipating=TRUE;

if(open_corner_flag)

{

if((remainder[n]/lPow)==0)

z[x]++;

}

remainder[n+1]=remainder[n]%lPow;

}

if(oslo)

49

zc[x]=int(ran2(&seed)*2)+zcMinRelax;

else

{

if(!btw)

zc[x]=int(ran2(&seed)*2*dimension)+zcMinRelax;

}

if(z[x]>=zc[x])

{

avInfo.pos=x;

queue->push(avInfo);

}

}

// Checks whether the sandpile has reached a critical state

BOOL CSandpile::check_avz(void)

{

int zSum = 0;

static BOOL takeData = FALSE;

for (int i=0; i<systemSize; i++)

zSum += z[i];

double avz = zSum/double(systemSize);

static double movavz_fast=0, movavz_slow=0;

if (!takeData)

{

movavz_fast = (0.3 * movavz_fast) + (0.7 * avz);

movavz_slow = (0.6 * movavz_slow) + (0.4 * avz);

if (movavz_fast < movavz_slow)

{

takeData = TRUE;

cout << "Starting calculations..." << endl;

}

cout << avz << "\t" << movavz_slow << "\t" << movavz_fast << endl;

avz_out << avz << "\t" << movavz_slow << "\t" << movavz_fast << endl;

}

else

avz_out << avz << endl;

return takeData;

}

// Calculates and stores required avalanche features

void CSandpile::calc_results()

{

static int prf_count=0;

static int fractal_count=0;

int qSize = queue->sizeOfQueue();

if(qSize>=maxAvSize)

{

if(dissipating)

{

largeav_out_d << qSize << endl;

largeav_count_d++;

}

else

{

largeav_out_nd << qSize << endl;

largeav_count_nd++;

}

}

else

{

SAvInfo avInfo = queue->getValue(qSize-1);

if(dur_flag)

dur_data[avInfo.time]++;

if(dissipating)

size_data_d[qSize]++;

else

size_data_nd[qSize]++;

50

if(rad_flag)

rad_data[int(calc_radius() + 0.5)]++;

if ((qSize > 1)&&(branch_flag))

{

calc_branch();

if ((qSize == sizeToProfile)&&(prf_count<maxProfiles))

{

output_profile(avInfo);

prf_count++;

}

}

}

}

// calculates radius of gyration of avalanche

// (average r.m.s. distance of elements from avalanche c.m)

double CSandpile::calc_radius()

{

double result;

double rbar=0, rdiffsq=0, rsum=0, rsumsq=0;

int qSize=queue->sizeOfQueue(), i, n;

SAvInfo avInfo;

for(i=0;i<qSize;i++)

{

avInfo=queue->getValue(i);

remainder[0]=avInfo.pos;

rsumsq=0;

for(n=0; n<dimension; n++)

{

lPow = intpow(L, (dimension-(n+1)));

rsumsq+=intpow((remainder[n]/lPow),2);

remainder[n+1]=remainder[n]%lPow;

}

rsum=sqrt(rsumsq);

}

rbar=rsum/double(qSize);

for(i=0;i<qSize;i++)

{

avInfo=queue->getValue(i);

remainder[0]=avInfo.pos;

for(n=0; n<dimension; n++)

{

lPow=intpow(L, (dimension-(n+1)));

rsumsq+=intpow((remainder[n]/lPow),2);

remainder[n+1]=remainder[n]%lPow;

}

rdiffsq += pow((sqrt(rsumsq)-rbar), 2);

}

result=sqrt(rdiffsq/qSize);

return result;

}

// calculates branching ratio

void CSandpile::calc_branch()

{

int i, bin;

SAvInfo avInfo;

int qSize = queue->sizeOfQueue();

// for (i=0; i<qSize; i++)

// prf_data[i] = 0;

avInfo = queue->getValue(qSize-1);

int maxTime = avInfo.time;

for (i=0; i<qSize; i++)

{

avInfo=queue->getValue(i);

prf_data[avInfo.time]++;

}

51

bin = int(log(qSize)/log(2));

for (i=1; i<=maxTime; i++)

{

if(dissipating)

branch_ratio_d[bin]+=(prf_data[i]/double(prf_data[i-1]));

else

branch_ratio_nd[bin]+=(prf_data[i]/double(prf_data[i-1]));

totalBranch += (prf_data[i]/double(prf_data[i-1]));

}

if(dissipating)

branch_ratio_d[bin]=branch_ratio_d[bin]/double(avInfo.time);

else

branch_ratio_nd[bin]=branch_ratio_d[bin]/double(avInfo.time);

totalTime += avInfo.time;

}

// outputs the avalanche profile

void CSandpile::output_profile(SAvInfo &aI)

{

SAvInfo avInfo=aI;

for (int i=0; i<=avInfo.time; i++)

prf_out << i << "\t" << prf_data[i] << endl;

prf_out << endl;

}

// combine dissipating and non-dissipating size results

void CSandpile::combine_results(int totalAv)

{

int i=0, comb_res;

unsigned int j;

size_out.open("size");

for(i=0;i<maxAvSize;i++)

{

comb_res = size_data_d[i]+size_data_nd[i];

if(comb_res)

size_out << i << "\t" << comb_res/double(totalAv) << endl;

}

largeav_count=largeav_count_d+largeav_count_nd;

largeav_data = new int[largeav_count];

ifstream largeav_in_d("largeavD", ios::in, ios::nocreate);

ifstream largeav_in_nd("largeavND", ios::in, ios::nocreate);

for(j=0;j<largeav_count_d;j++)

{

if(largeav_in_d.eof())

break;

largeav_in_d >> largeav_data[j];

}

for(j=largeav_count_d;j<(largeav_count_d+largeav_count_nd);j++)

{

if(largeav_in_nd.eof())

break;

largeav_in_nd >> largeav_data[j];

}

hpsort(largeav_count, largeav_data); // sort results

int thisAvSize, prevAvSize, avNumber=1;

if(largeav_count>0)

{

prevAvSize=largeav_data[0];

for (j=1;j<largeav_count;j++)

{

thisAvSize=largeav_data[j];

if(thisAvSize==prevAvSize)

avNumber++;

else

{

size_out << prevAvSize << "\t" << avNumber/double(totalAv) << endl;

avNumber=1;

52

}

prevAvSize=thisAvSize;

}

size_out << thisAvSize << "\t" << avNumber/double(totalAv) << endl;

}

delete [] largeav_data;

size_out.close();

}

// writes results arrays to disk

void CSandpile::output_results(int totalAv)

{

cout << "Writing results" << endl;

combine_results(totalAv); // output combined results

int i;

unsigned int j;

//Output dissipating avalanches

size_out_d.open("sizeD");

for (i=0; i<maxAvSize; i++)

if (size_data_d[i])

size_out_d << i << "\t" << size_data_d[i]/double(totalAv) << endl;

ifstream largeav_in_d("largeavD", ios::in, ios::nocreate);

largeav_data_d = new int[largeav_count_d];

for(j=0;j<largeav_count_d;j++)

if(!largeav_in_d.eof())

largeav_in_d >> largeav_data_d[j];

cout << "Sorting..." << endl;

hpsort(largeav_count_d, largeav_data_d); // sort results

ofstream large_sort_d("lsortD");

for(i=0;i<int(largeav_count_d);i++)

large_sort_d << largeav_data_d[i] << endl;

int thisAvSize, prevAvSize, avNumber=1;

if(largeav_count_d>0)

{

prevAvSize=largeav_data_d[0];

for (i=1;(unsigned)i<largeav_count_d;i++)

{

thisAvSize=largeav_data_d[i];

if(thisAvSize==prevAvSize)

avNumber++;

else

{

size_out_d << prevAvSize << "\t" << avNumber/double(totalAv) << endl;

avNumber=1;

}

prevAvSize=thisAvSize;

}

size_out_d << thisAvSize << "\t" << avNumber/double(totalAv) << endl;

}

delete [] largeav_data_d;

size_out_d.close();

// Output non dissipating avalanches

size_out_nd.open("sizeND");

for (i=0; i<maxAvSize; i++)

if(size_data_nd[i])

size_out_nd << i << "\t" << size_data_nd[i]/double(totalAv) << endl;

ifstream largeav_in_nd("largeavND", ios::in, ios::nocreate);

largeav_data_nd = new int[largeav_count_nd];

for(j=0;j<largeav_count_nd;j++)

if(!largeav_in_nd.eof())

largeav_in_nd >> largeav_data_nd[j];

hpsort(largeav_count_nd, largeav_data_nd); // sort results

53

ofstream large_sort_nd("lsortND");

for(i=0;i<int(largeav_count_nd);i++)

large_sort_nd << largeav_data_nd[i] << endl;

if(largeav_count_nd>0)

{

prevAvSize=largeav_data_nd[0];

for (i=1;(unsigned)i<largeav_count_nd;i++)

{

thisAvSize=largeav_data_nd[i];

if(thisAvSize==prevAvSize)

avNumber++;

else

{

size_out_nd << prevAvSize << "\t" << avNumber/double(totalAv) << endl;

avNumber=1;

}

prevAvSize=thisAvSize;

}

size_out_nd << thisAvSize << "\t" << avNumber/double(totalAv) << endl;

}

delete [] largeav_data_nd;

size_out_nd.close();

if(dur_flag) // output duration

{

dur_out.open("duration");

for (i=0; i<maxAvSize; i++)

{

if (dur_data[i])

dur_out << i+1 << "\t" << dur_data[i] << endl;

}

dur_out.close();

}

if(rad_flag) // output radius

{

rad_out.open("radius");

for (i=0; i<maxRad; i++)

if (rad_data[i])

rad_out << i << "\t" << rad_data[i] << endl;

rad_out.close();

}

if(branch_flag)

{

prf_out.close();

prf_out.open("profiles");

for (int i=0; i<=maxAvSize; i++)

{

if(prf_data[i]!=0)

prf_out << i << "\t" << prf_data[i] << endl;

}

}

//Writes sandpile configuration to pile_out

//WARNING: can produce a VERY large file

// for(i=0;i<L*L;i++)

// {

// if(z[i]==3) // output location of critical sites only

// pile_out << i%L << "\t" << (i/L) << endl;

// }

if(totalAv==maxAv)

{

endTime = (unsigned)time(NULL);

if(branch_flag&&(totalTime>0))

{

cout << "Average branching ratio = " << totalBranch / totalTime << endl;

54

misc_out << "Average branching ratio = " << totalBranch / totalTime << endl;

}

cout << "Calculations completed in " << endTime-startTime

<< " seconds for " << totalAv << " avalanches" << endl;

misc_out << "Calculations completed in " << endTime-startTime

<< " seconds for " << totalAv << " avalanches" << endl;

}

}

// quick integer power calculator x^y

int CSandpile::intpow(int x, int y)

{

int result=1;

for (int i=0;i<y;i++)

result*=x;

return result;

}

// adapted from Numerical Recipes in C

// heapsort routine pg 337

void CSandpile::hpsort(unsigned long n, int ra[])

// n is the size of ra[]

{

unsigned long i,ir,j,l;

int rra;

if (n < 2) return;

l=(n >> 1);

ir=n-1;

for(;;)

{

if (l >0)

rra=ra[--l];

else

{

rra=ra[ir];

ra[ir]=ra[0];

if (--ir ==0)

{

ra[0]=rra;

break;

}

}

i=l;

j=l+1;

while (j<=ir)

{

if (j<ir && ra[j]<ra[j+1])

j++;

if (rra < ra[j])

{

ra[i]=ra[j];

i=j;

j <<=1;

}

else

break;

}

ra[i]=rra;

}

}

#ifndef __QUEUE_HEADER

#define __QUEUE_HEADER

#include "Globals.h"

55

class CQueue

{

private:

int size;

int front, back, wrap;

SAvInfo *queue;

public:

CQueue();

CQueue(int s);

~CQueue();

void push(const SAvInfo &x);

SAvInfo pop();

BOOL isEmpty();

void clear();

int sizeOfQueue();

SAvInfo& getValue(int n);

};

#endif // __QUEUE_HEADER

#include "Queue.h"

// constructor

CQueue::CQueue(int s)

{

size = s;

front = 0;

back = 0;

wrap = 0;

queue = new SAvInfo[size];

}

// destructor

CQueue::~CQueue()

{

if (queue)

{

delete queue;

queue = NULL;

}

}

// pushes information on to end of queue

// and updates position of queue end

void CQueue::push(const SAvInfo &x)

{

#ifdef _DEBUG

if (back == front-1)

{

cerr << "Trying to push onto full queue" << ’\n’;

int i;

cin >> i;

exit(0);

}

#endif

queue[back] = x;

if (back==(size-1))

{

back=0;

wrap++;

}

else

back++;

}

56

// return information at front of queue

// and advance front of queue

SAvInfo CQueue::pop()

{

#ifdef _DEBUG

if (front == back)

{

cerr << "Trying to pop off empty queue" << ’\n’;

int i;

cin >> i;

exit(0);

}

#endif

SAvInfo result = queue[front];

if (front==(size-1))

front=0;

else

front++;

return result;

}

//check to see if there are any elements in the queue

BOOL CQueue::isEmpty()

{

if (front == back)

return TRUE;

return FALSE;

}

// reset queue

void CQueue::clear()

{

front = 0;

back = 0;

wrap = 0;

}

// return number of elements in queue

int CQueue::sizeOfQueue()

{

int qsize = back + (size*wrap);

return qsize;

}

// get value at a given location in queue

SAvInfo& CQueue::getValue(int n)

{

SAvInfo& result = queue[n];

return result;

}

57

58

C Logarithmic Binning Code

#include <stdlib.h>

#include <fstream.h>

#include <iostream.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

int main ()

{

const long avnum=5;

int sign, decptr=1, ocount;

long s, oldpos, endpos, j;

double Ns, base, offset, bin, newpos, binpos, binval;

double store_binpos, store_binval, slope_val;

char infilename[20], binoutname[20], slopeoutname[20], histoutname[20];

double *hist_data, *hist_data_weight;

double hist_binsize;

ifstream in;

ofstream bin_out;

ofstream slope_out;

ofstream hist_out;

cout << "File to be processed ?" << ’\n’;

cin >> infilename;

cout << "Enter histogram bin size" << ’\n’;

cin >> hist_binsize;

cout << "Working..." << ’\n’;

hist_data = new double[int(3/hist_binsize)];

hist_data_weight = new double[int(3/hist_binsize)];

for(j=0;j<int(3/hist_binsize);j++)

{

hist_data[j]=0;

hist_data_weight[j]=0;

}

for(j=1;j<10;j++)

{

base=1+0.1*j;

cout << base << endl;

strcpy (binoutname,"bin");

strcat(binoutname,ecvt(base,2,&decptr,&sign));

strcat(binoutname,"_");

strcat(binoutname,infilename);

strcpy (slopeoutname,"slope");

strcat(slopeoutname,ecvt(base,2,&decptr,&sign));

strcat(slopeoutname,"_");

strcat(slopeoutname,infilename);

bin_out.open(binoutname);

slope_out.open(slopeoutname);

59

for(ocount=0;ocount<avnum;ocount++)

{

offset=ocount*(base*base-base)/avnum;

in.open(infilename);

oldpos=0;

newpos=1.0+offset;

store_binpos=0.0;

// read first set of data

in >> s >> Ns;

do

{

bin=0;

while ((s<=long(newpos))&&(!in.eof()))

{

if (!in.eof())

bin+=Ns;

in >> s >> Ns;

}

if(bin>0.0)

{

// calculate appropriate range of s

if (!in.eof())

endpos=long(newpos);

else

endpos=s;

binpos=sqrt(((oldpos==0)?1:oldpos) * double(endpos));

binval=bin/(endpos-double(oldpos));

if(store_binpos!=0)

slope_val =log(binval/store_binval)/log(binpos/store_binpos);

if((slope_val<0)&&(slope_val>-3))

{

hist_data[abs(int(slope_val/hist_binsize))]++;

hist_data_weight[abs(int(slope_val/hist_binsize))]+=log10(base);

}

// write binned data to file using geometric mean as binposition

// condition prevents writing empty last bin

if ((!in.eof())||(bin>0))

bin_out << binpos << "\t" << binval << ’\n’;

if (store_binpos>0)

{

slope_out << sqrt(binpos*store_binpos) << "\t"

<< slope_val << "\t" << bin << ’\n’;

}

oldpos=long(newpos);

}

store_binpos=binpos;

store_binval=binval;

// find next newpos

// do-loop to avoid zero-size bins

do

{

newpos*=base;

}while((long(newpos)-oldpos)==0);

}while (!in.eof());

in.close();

}

bin_out.close();

slope_out.close();

}

strcpy (histoutname,"hist_");

60

strcat(binoutname,ecvt(hist_binsize,5,&decptr,&sign));

strcat(histoutname,infilename);

hist_out.open(histoutname);

hist_out << "Bin \t weighted value \t frequency \n";

for(j=0;j<int(3/hist_binsize);j++)

{

if(hist_data[j]!=0)

hist_out << -((hist_binsize*j)+(hist_binsize/2))

<< "\t" << hist_data_weight[j]

<< "\t" << hist_data[j] << ’\n’;

}

delete [] hist_data;

delete [] hist_data_weight;

hist_out.close();

cout << "Done!" << endl;

return 0;

}

61

62

D Modified tn after inclusion of ρ′

t0 = (1− ρ)

t1 = ρ[x+ (n1 + n2)(1− ρ) + b((1− ρ)2]

t2 = ρ[{(n1 + n2)ρ+ 2bρ(1− ρ)}
·{n1 + n2(1− ρ) + b(1− ρ) + x}]

t3 = ρ[{(n1 + n2)ρ

·{(n2 + b)ρ}
·{n1 + n2(1− ρ) + b(1− ρ) + x}
+{2bρ(1 − ρ)}
·{(n2 + b)ρ}
·{n1 + n2 + b+ x}
+{bρ2}
·{(n1 + x)2 + (n1 + x)(n2 + b)(1 − ρ) + (n2 + b)2(1− ρ′)}]

t4 = ρ[{(n1 + n2)ρ}
·{(n2 + b)ρ}
·{(n2 + b)ρ}
·{n1 + n2 + b+ x}
+{bρ2}
·{(n1 + x)(n2 + b)ρ+ (n2 + b)2ρ′}
·{n1 + n2 + b+ x}]

63

64

E Mapping for approximative DDRG

No. of processes No. of grains leaving Processes
with c = 0

Processes
with c = 1

Processes
with c = 2

m

2 0 2 0 0 {1, 0, 0, 0, 0}
2 1 1 1 0 {0, 1, 0, 0, 0}
2 2 1 0 1 {0, 0, 1, 0, 0}
2 2 0 2 0 {0, 1

4
, 3

4
, 0, 0}

2 3 0 1 1 {0, 0, 1
2
, 1

2
, 0}

2 4 0 0 2 {0, 0, 0, 1, 0}
3 0 3 0 0 {1, 0, 0, 0, 0}
3 1 2 1 0 {0, 1, 0, 0, 0}
3 2 2 0 1 {0, 0, 1, 0, 0}
3 2 1 2 0 {0, 1

6
, 5

6
, 0, 0}

3 3 1 1 1 {0, 0, 1
3
, 2

3
, 0}

3 3 0 3 0 {0, 0, 1
2
, 1

2
, 0}

3 4 1 0 2 {0, 0, 0, 2
3
, 1

3
}

3 4 0 2 1 {0, 0, 1
12
, 2

3
, 1

4
}

3 5 0 1 2 {0, 0, 0, 1
3
, 2

3
}

3 6 0 0 3 {0, 0, 0, 0, 1}
4 0 4 0 0 {1, 0, 0, 0, 0}
4 1 3 1 0 {0, 1, 0, 0, 0}
4 2 3 0 1 {0, 0, 1, 0, 0}
4 2 2 2 0 {0, 1

6
, 5

6
, 0, 0}

4 3 2 1 1 {0, 0, 1
3
, 2

3
, 0}

4 3 1 3 0 {0, 0, 1
2
, 1

2
, 0}

4 4 2 0 2 {0, 0, 0, 2
3
, 1

3
}

4 4 1 2 1 {0, 0, 1
12
, 2

3
, 1

4
}

4 4 0 4 0 {0, 0, 1
8
, 3

4
, 1

8
}

4 5 1 1 2 {0, 0, 0, 1
3
, 2

3
}

4 5 0 3 1 {0, 0, 0, 1
2
, 1

2
}

4 6 1 0 3 {0, 0, 0, 0, 1}
4 6 0 2 2 {0, 0, 0, 1

6
, 5

6
}

4 7 0 1 3 {0, 0, 0, 0, 1}
4 8 0 0 4 {0, 0, 0, 0, 1}

65

66

F Iteration of approximative DDRG

k ρ p0 p1 p2 p3 p4

0 0.25 0 0 0 0 1
1 0.297872 0 0 0 0.642857 0.357143
2 0.337321 0 0.017573 0.213582 0.555577 0.213267
3 0.368667 0.001402 0.060171 0.315661 0.470082 0.152683
4 0.393740 0.005182 0.100835 0.363134 0.410753 0.120095
5 0.413857 0.010039 0.133864 0.386196 0.369567 0.100333
6 0.430025 0.015024 0.159587 0.397738 0.340217 0.087433
7 0.443031 0.019658 0.179436 0.403554 0.318775 0.078577
8 0.453501 0.023748 0.194771 0.406421 0.302788 0.072272
9 0.461935 0.027254 0.206674 0.407738 0.290675 0.067658
10 0.468729 0.030205 0.215965 0.408240 0.281378 0.064212
11 0.474205 0.032659 0.223256 0.408318 0.274171 0.061596
12 0.478620 0.034683 0.229003 0.408189 0.268539 0.059586
13 0.482178 0.036344 0.233553 0.407967 0.264110 0.058026
14 0.485048 0.037701 0.237167 0.407718 0.260610 0.056805
15 0.487362 0.038806 0.240046 0.407472 0.257832 0.055845
16 0.489228 0.039705 0.242344 0.407246 0.255620 0.055085
17 0.490733 0.040434 0.244183 0.407046 0.253855 0.054482
18 0.491947 0.041025 0.245657 0.406873 0.252442 0.054002
19 0.492926 0.041504 0.246839 0.406727 0.251311 0.053618
20 0.493716 0.041891 0.247789 0.406605 0.250403 0.053312
21 0.494353 0.042204 0.248552 0.406504 0.249675 0.053066
22 0.494867 0.042457 0.249166 0.406420 0.249089 0.052868
23 0.495282 0.042662 0.249660 0.406351 0.248617 0.052710
24 0.495616 0.042827 0.250058 0.406295 0.248238 0.052583
25 0.495886 0.042960 0.250378 0.406249 0.247933 0.052480
26 0.496103 0.043068 0.250637 0.406211 0.247687 0.052398
27 0.496279 0.043155 0.250845 0.406181 0.247488 0.052331
28 0.496420 0.043225 0.251012 0.406156 0.247329 0.052278
29 0.496535 0.043282 0.251148 0.406137 0.247200 0.052235
30 0.496627 0.043327 0.251257 0.406120 0.247096 0.052200
31 0.496701 0.043364 0.251345 0.406107 0.247012 0.052172
32 0.496761 0.043394 0.251416 0.406097 0.246945 0.052149
33 0.496810 0.043418 0.251473 0.406088 0.246890 0.052131
34 0.496849 0.043437 0.251519 0.406081 0.246846 0.052116
35 0.496880 0.043453 0.251556 0.406076 0.246811 0.052105
36 0.496905 0.043465 0.251586 0.406071 0.246782 0.052095
37 0.496926 0.043476 0.251610 0.406068 0.246759 0.052087
38 0.496942 0.043484 0.251630 0.406065 0.246741 0.052081
39 0.496956 0.043490 0.251646 0.406062 0.246726 0.052076
40 0.496967 0.043496 0.251658 0.406060 0.246714 0.052072
41 0.496975 0.043500 0.251668 0.406059 0.246704 0.052069
42 0.496982 0.043504 0.251677 0.406058 0.246696 0.052066
43 0.496988 0.043506 0.251683 0.406057 0.246690 0.052064
44 0.496992 0.043509 0.251689 0.406056 0.246685 0.052062
45 0.496996 0.043510 0.251693 0.406055 0.246681 0.052061
46 0.496999 0.043512 0.251697 0.406055 0.246677 0.052060
47 0.497001 0.043513 0.251699 0.406054 0.246674 0.052059
48 0.497003 0.043514 0.251702 0.406054 0.246672 0.052058
49 0.497005 0.043515 0.251704 0.406054 0.246671 0.052058
50 0.497006 0.043515 0.251705 0.406053 0.246669 0.052057
51 0.497007 0.043516 0.251706 0.406053 0.246668 0.052057
52 0.497008 0.043516 0.251707 0.406053 0.246667 0.052056
53 0.497009 0.043517 0.251708 0.406053 0.246666 0.052056
54 0.497009 0.043517 0.251709 0.406053 0.246666 0.052056
55 0.497010 0.043517 0.251709 0.406053 0.246665 0.052056
56 0.497010 0.043517 0.251710 0.406053 0.246665 0.052056
57 0.497010 0.043518 0.251710 0.406053 0.246665 0.052056
58 0.497010 0.043518 0.251710 0.406053 0.246664 0.052055
59 0.497011 0.043518 0.251710 0.406053 0.246664 0.052055
60 0.497011 0.043518 0.251710 0.406052 0.246664 0.052055
61 0.497011 0.043518 0.251711 0.406052 0.246664 0.052055
62 0.497011 0.043518 0.251711 0.406052 0.246664 0.052055
63 0.497011 0.043518 0.251711 0.406052 0.246664 0.052055
64 0.497011 0.043518 0.251711 0.406052 0.246664 0.052055
65 0.497011 0.043518 0.251711 0.406052 0.246664 0.052055
66 0.497011 0.043518 0.251711 0.406052 0.246663 0.052055
∞ 0.497011 0.043518 0.251711 0.406052 0.246663 0.052055

67

