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Answers to exercises

1.1 Moments and moment ratio of the cluster number density ind = 1.

(i) In d = 1, the cluster number density n(s,p) = (1 — p)?p®.

Thus the kth moment My, of the cluster number density
Mi(p) = i s*n(s,p)
= i s* (1 —p)*p®
=(1—-p) iskps
s=1
—(1-p? Y st explsln(p)]
s=1
=(1-p)° i s* exp(—s/s¢)
s=1

~ (1 —p)2/ s¥ exp(—s/s¢) ds,
1

—a-p [ " (use)* exp(—u) sedu

/s¢
= (1—p)?sctt / u¥ exp(—u) du
1/s¢
_1 \ k1 peo
=(1-p)? (—) / uF exp(—u) du.
ln(p) —In(p)

(1.1.1)

Letting p — p, , the lower limit of the integral tends to zero (as
pe = 1), and the integral becomes the integral representation
of the Gamma function. Using the Taylor expansion In(p) =
In[1 — (1 - p)] = —(1 — p) for p = p, we find

1

_ 2
M, = (1-p) Wk!

= kl(p. —p)'* (1.1.2)

so we identity I'y = k! and v, = k — 1.

with S =

In(p)

u=s/s¢;du=ds/s¢
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Alternative derivation with the use of “a trick”:

oo
Mk = Z skn(s,p)
s=1

oo d k
=(1-p)? Z (p—> p®  the “trick”
s=1 dp
) d k oo
=(1-— = 8
(1-p) (pdp> Szzlp
d\"* p
=(1=p)2(p—=) =
(=) (pdp> l-p
Z k1 —p)tk for k > 2, (1.1.3)
followed by proof by induction.
First the case k = 2.
d\? p
My = 1-p? (p— ) —
k=2 = (1-p) (pdp) 1-p
d 1-p)-1+p
=(1=p2{p—
(=) (pdp)p 1—p)?
d p
=(1-p2(p—
-0 (o) o
g e (1=p)?-14+p-2(1-p)
_ (d-p+2
I-p
_p+p
I-p
L2
I-p
= 2l(p.—p) ! forp—op.=1. (1.1.4)
Now, assume that
d\* p
My=01-p?(p—) — =kl1-p)* for k > 2.
v= -9 (b ) 2 = Ra-p) or k >

(1.1.5)

ws-book9x6
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Then
AN p
—_— 2 —_— —_—
My41 = (1—p) (pdp) T
d a\* p
erd) )
=p\rg ) \Pa) T
= (1-p)? (p%p) kl(1 —p)_l_k using Equation (1.1.5)
= (1-p)’pk!(-1-k)(1—-p) > *-(-1)

=pk+1)!(1-p~*
= (k+ D)1 —p)'=*+) for p - p. =1, (1.1.6)

so the assumption Equation (1.1.5) is true for k + 1, which
completes our proof.

(ii) Note that M; = Y52, sn(s,p) = p for p < 1soT; = p and
v1 = 0. Hence,the moment ratio

Te(l—p) T 2[(1 —p)°]"°
-

- Fl’i?f (1.1.7)
Since I'y — 1 for p = p, we find
gk — % for p =+ p,
- (1.1.8)

which is a constant for a given k.

1.2 Site percolation and site-bond percolation in d = 1.

(i) (a) A percolating (infinite) cluster is present at p.. In one
dimension, a percolating cluster can have no empty sites.
Therefore p. = 1.

(b) A cluster of size s has s consecutive sites occupied, each
with probability p, and two empty sites, one at either end,
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each with probability (1 — p), so
n(s,p) = p*(1 —p)*. (1.2.1)

Since n(s,p) is the number of s clusters per lattice site,
sn(s,p) is the probability that an arbitrary site belongs
to an s cluster. Summing over all possible sizes of clus-
ters, we obtain the probability that an arbitrary site is
occupied, that is,

o0

Z sn(s,p) =p forp<1. (1.2.2)

s=1

This identity is not valid at p = 1 where the percolating
cluster is occupying all the lattice leaving n(s,p) = 0 for

p=1.
We find that
isz =y (pi) (pi) P’
s=1 s=1 dp dp
d d) = ,
B (pdp) (pdp) S;p
d d P
={p— — = 1
(pdp> pdp>1—p orp <
d\ (1-p)+p
={p— f 1
(pdp>p (1-p)? orps
_(, 4 p
= pdp) T forp<1
1-p)? +p2(1—
:p( pzl—i)i p) forp<1
1+p

forp<1. (1.2.3)

ws-book9x6
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(e) Using the above results we find

B Zjil Szps(l - p)2
Xp) = = )

(1 - p)2p(11j-5)3

=P (1.2.4)

(f) Therefore

1 2
C

so we identify the amplitude I' = 2 and the critical expo-
nent v = 1.

(ii)) (a) A percolating (infinite) cluster is present at (pe,q.)-
Therefore, no sites nor bonds can be empty, implying
(pc;qc) = (17 1)

(b) An s cluster has s consecutive site occupied, each with
probability p, and s — 1 consecutive bonds occupied, each
with probability ¢q. Since pq is the probability to have
a site-bond occupied, (1 — pq)? is the probability that a
cluster does not continue at either end. Therefore

n(s,p,q) =p°¢" " (1—pg)*. (1.2.6)

(c) First,

> sn(s,p,q) =Y sp°¢" ' (1 - pg)*
s=1 s=1
1 - s 2
== s(pg)® (1 - pq)
q s=1
1

=-Pq
q

=p (1.2.7)
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and similarly

o0 o0

_ 2
> " s’n(s,p,q) = »_ s’p°¢" " (1 - pg)
s=1 s=1

o

1
=—(1-pg)*)_ s*(pg)®
q s=1
1 2 1+ pq
=-(1=pg) Pa——3
q ( ) (1—pq)?
1
—p M (1.2.8)
1-pq
so that
1+ pq
x(@,q) = —— (1.2.9)

1-pq’
This result is identical to that of site percolation if we
identify the occupation probability with pgq, that is, a site-
bond is the equivalent of a site.
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1.3 Percolation ind = 1 on a lattice with periodic boundary conditions.

(1)

(i)

(iii)

When s < L — 2, an s-cluster must be bounded by two empty
sites. For s = L —1, there is only one empty site in the system
while for s = L, all sites are occupied. Clearly we cannot have
s > L. Thus

p°(1 — p)? fors < L—2
L—1
p" (1 -p) fors=L—-1
n(s,p) = 1.3.1
(s,p) o tor s — I (1.3.1)
0 for s > L.

A cluster with s = L is percolating and hence not to be char-
acterized as being finite. Therefore, Zst_ll sn(s, p) represents
the probability that a site belongs to a finite cluster.
In a d = 1 system of size L, the probability of an arbitrarily
selected site to belong to the spanning (infinite) cluster

P (L,p) = p~. (1.3.2)

Alternatively, an occupied site either belongs to the spanning
cluster or to a finite cluster (s < L), that is,

L-1
POO(L7p) =p—- Z sn(s,p)
s=1

L—2
p—(L—=1p" (1 —-p) = > sp’(1-p)°
s=1

=p—(L—-1p" " (1-p)-(1-p)? (p%p) (Lz2ps>
p- - ta-p - -2 (p ) (552 )

2 (11—

=p—(L—-1)p" (1

ws-book9x6

-p)—(1-p)p

=p—(L-
=ph. (1.3.3)

Dp* ™+ (L= 1p" — (p—p*) (A — (L - 1)p" ) —p” +p"
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(iv) (a) In d =1 percolation,

1 1 1
E:—mﬁlnpz—g©p=exp (—g) (1.3.4)

Thus

P (L, &) =pl = [exp (—%)]L =exp (-%) . (1.3.5)

(b) Write the order parameter using the scaling form

Pu(D) =exp (-5 ) =€ PO, (136)

where
B/v=0 (1.3.7)
and a scaling function
L
P(&) = exp(~)

{constant for L < ¢ (13.8)

decaying rapidly for L > &.
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1.4 Cluster number density scaling functions ind=1 and the Bethe lattice.

(i) (a) Rewriting the cluster number density in d = 1 we find

S

n(s,p) = (1-p)’p

: 1
= (p. —p)° exp(—s/s¢) with s¢ = —m
= 5 [s(pe — )] exp(—s/s¢)
~ 577 (s/s¢)” exp(—s/s¢) for p = pc
= 572Gra(s/s¢) (1.4.1)
with
Gra(s/s¢) = (s/5¢)” exp(—s/s¢). (1.4.2)
and
se = (pe—p) ' forp—=p, . (1.4.3)
Thus we identify
T=2, (1.4.4a)
o=1, (1.4.4b)
L (1.4.4c)
b=1. (1.4.4d)

(b) From the graph of the scaling function G4, see Fig-
ure 1.4.1, we see that for small arguments s < s¢, the
function increases quadratically in the argument s/s¢
while it decays exponentially fast for s > s¢. Indeed,
such cluster sizes are exponentially rare as the character-
istic cluster size s¢ is the typical size of the largest cluster.

(c) The scaling function Gy4(x) = 22 exp(—z) and

gﬁ) (x) = 2z exp(—z) — z? exp(—z) = (22 — 2?) exp(—2z)
gf? (z) = (2 — 22 — 2z + 2?) exp(—1z) = (2 — 42 + 2°) exp(—1x)

Hence G14(0) = 6% (0) = 0,G{%(0) = 2. Thus the Taylor
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10

10°
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Gra(s/s¢)

10°®
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10° 10" 10° 10° 10" 10° 100 10°

s/ s¢

Fig. 1.4.1 The scaling function G4 in d = 1 increases like (s/s¢)? for small arguments
and decays (exponentially) fast for large arguments.

expansion of G4 around zero,

Gra(s/6) = G1a(0) + G2 (0)s/s¢ + 56 (0) (s/se)? + -+
= (3/35)2 +--- (1.4.5)

which is consistent with Figure 1.4.1.
(ii) (a) On a Bethe lattice with z = 3 where p. = 1/2 we have

n(s,p) o< s~/ exp(—s/s¢) s>1
1

1 _
se=—————> - (p—p) forp—p..
In(4p — 4p?) 4

Thus we identify the scaling function

OBethe(8/s¢) = exp(—s/s¢). (1.4.6)

with
T=5/2 (1.4.7a)
o=1/2 (1.4.7b)

b=1/4. (1.4.7¢)
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It would be possible to determine a by applying a normal-
isation constraint. For example when p < p. the cluster
number density must satisfy

Ssn(s,p) =ad s Ghetne(s/s¢) =p. (14.8)
s=1 s=1

This constraint will determine a.

(b) From the graph of the scaling function Ggethe, see Fig-
ure 1.4.2, we see that for small arguments s < s¢, the
function is approximately constant while it decays expo-
nentially fast for s > s¢. Indeed, such cluster sizes are
exponentially rare as the characteristic cluster size s¢ is
the typical size of the largest cluster.

10"

10°

10"

10°

10°

10

10°

GBethe (3/35)

10°

10-7 NIRRT BRI TTT] RN IR AT BRI R T ATT] B ENI RETIT] BRI R TITT] BRI R R  FENI T
10° 10° 10* 10°®° 10° 100 10° 10* 107

s/s¢

Fig. 1.4.2 The scaling function Ggeghe for the Bethe lattice is approximately constant
for small arguments and decays exponentially fast for large arguments.

(c¢) Clearly
OBethe(r) =1 -z +--- =~ 1, (1.4.9)

consistent with Figure 1.4.2.
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1.5 Moments of the cluster number density.

(i) We approximate the sum by an integral:
o
Mi(p) =) s*n(s,p)
s=1
o
= Z as*~7G(s/s¢)
s=1

~ / as®~7G(s/s¢) ds
1
= / a(seu)* 7 G(u)se du with u = s/s;¢
1/s¢
= sg“_Ta/ uF TG (u) du
1/s¢

— |p _pc|f(k+17‘r)/aabk+lf7'/ uk—‘rg(u) du for P = pe

0
=Tg |p—pe| (1.5.1)
where
1—
Tk = krlo7 (1.5.2a)
g
Ty = abf =" / uF "G (u) du. (1.5.2b)
0

The critical amplitude I'y, is just a number independent of p.
Note that we recover the scaling relation

3—T7

g
by letting k = 2.
(ii) The moment ratio
_ MpMf?
"
11]91'%:—2
= Fkiil (1.5.4)
2

2

= fooo u* "G (u) du [fooo ul™7G(u) du]lﬁ
™ w2 "G (u) du] "™
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(iii) In d = 1 percolation, 7 = 2,0 = 1,a = 1,b = 1 and the scaling
function Gy4(u) = u? exp(—u) so

Ty = / u® exp(—u) du
0
k!

1.6 Universality of the ratio of amplitudes for the average cluster size.
By definition

Loy 80(5,9)
Z:il sn(s,p)

where the denominator )5 ; sn(s,p) = p. at p = p.. Since we are
ultimately interested in the limit p — p., we simply substitute the
denominator with p..

We thus find

x(p) = (1.6.1)

pCX(p) = Z 52”(37p)

= Zas%Tgi(s/sé)
s=1

~ /00 as® "Gy (s/s¢)ds (1.6.2)
1

Substituting u = s/s¢, that is s = s¢u and ds = s¢du. With the
new lower integration limit 1/s¢ we have

oo

pex(p) = / a (35u)27r G+ (u)se du

1/35

oo
= sg’Ta/ w2 7Gx (u) du
1/s¢

= |p_pclf(377’)/0'ab3*‘r/ u27-rgi(u) du fOI"p—)pc
0

where we, in the last step, have substituted s¢ = b|p — p.| '/ for
p — p. and changed the lower limit to zero as s, diverges at p = p..

(i) Assume p < p.. Then, in the limit p — p,,

_ _ —(3—T)/aab3_T * 2—T1
x(p) = (pc — p) ) G (u)du (1.6.3)
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with
3 -

=27 (1.6.4a)
o
b3—T o)

r-=2 / u?"7G_(u) du. (1.6.4b)
De 0

(i) Assume p > p.. Then, in the limit p — p/,

3—1 e}
x(p) = (p—pc)_“‘”/"L/ W "G, (u)du  (1.6.5)
0

Dc
with
=327 (1.6.6a)
o
+ a’b3_T oo 2—T
= ’ uw’ TGy (u) du. (1.6.6b)
e Jo

(iii) (a) By inspection v~ =+t = (3 —1)/0.
(b) The ratio of critical amplitudes

+ Cu?""G_(u) du
?__ _ §ooo uhg Eu; - (1.6.7)
0 +
is independent of the proportionality constants a and b
and p. and only depends on the universal critical exponent
7 and the universal scaling functions G4. Thus the ration
I't/T'~ is itself universal.

(¢) The ratio of the critical amplitudes I't /T~ is related to
the distance between the numerical results for the average
cluster size for p < p. and p > p. respectively. Numerical
simulations confirm that I't /T'~ is universal and one finds
't /T~ = 200 using the numerical results displayed.
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1.7 The order parameter on a Bethe lattice with coordination number z.

(i) Px(p) is the probability that an arbitrarily selected site be-
longs to the percolating infinite cluster. Consider the ‘origin’
in the Bethe lattice.

Py (p) = probability ‘origin’ is occupied -
probability at least one of the z branches connects to infinity

=p[l - Q%L ()] (1L.7.1)

where @)oo (p) denotes the probability that a given branch does
not connect to infinity. Again, we will rely on the fact that
all sites in a Bethe lattice are equivalent, so Q. (p) is also
the probability that a subbranch does not connect to infinity.
Hence

Qoo (p) = neighbour to ‘origin’ is empty + neighbour to ‘origin’ is occupied
but none of the (z — 1) subbranches connect to infinity
=1-p+pQi*(p) (1.7.2)

(ii) For convenience, we drop the p-dependence of ) (p) and sim-
ply write Q. Let

Q' =(1-[1-Qu))” ' =(1—2)*! withz=1- Q.
We expand to second order in 2 around z = 0.
fl@)=QQ-=2)"" = f(0)=1

V@) =~z =11 -2)"? = f0) = ~(z-1)

fO@)=(z-1)(z=-2)1-2)* = f@0) = (z - 1)(z - 2)
(1.7.3)

implying

Q%' ~ f(0) + M (0)z + % FO0)” + ...

- 1—(z—l)m+%(z—1)(z—2)m2+...
=1-(z-1)(1 - Qo)+ %(z —1)(z—2)(1 - Qu)?(*.7.4)
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Using the Taylor expansion result in Equation (1.7.2) we find

o =1=p+pQi!
a

1
R 1=p+p—p(z—1)(1 = Qo) +p5(z = 1)(z = 2)(1 - Quo)”

=1-p(z=1)+p(z - Qo + a(l + Q% — 2Qu) (1.7.5)

and rearranging

/—/b\—-\ /—;z—-\
a2 + {p(z—1)—1-2a}Qe+a+1—-p(z—1)=0&
a@Q’ + (b—2a)Qu +a-b=0& (1.7.6)
O = 2a —b+/(b—2a)2 —4a(a—b) _ 2a — b+ Vb2

As b > 0 since p eventually is larger that Z%l we find

7=t forp>pe.
The solution Qoo = 1 = Py (p) = 0 belongs to the regime
p < p.. The other solution is nontrivial and belongs to the
regime p > p., and hence

1 forp<p
QOO(p) = {1 2p(z—1)—2 f ¢ (177)
THe DGy TP Pe
(iii) The relevant solution has Qs < 1. Substituting into the
Equation (1.7.1)

Poo(p) = p(1 — Q%) 2
:p[l—(l—%) ]

b
Note that the ratio
-1)-1
é u_)() forp_)lel:pcy

a pi(z—1)(z—2)
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so b/a is a small quantity for p — p.. Let g(z) = (1 — x)*.
Taylor expanding to first order we find g(0) = 1,9V (z) =

—2(1—2)*1,gM(0) = —zs0 (1 —2)* ~ 1 — 2z for z = 0.
Thus
b z
Polp)=p-p(1-~

I
N

]
NN
]
/N
|

N

| [+~
ok
S~

- Z2_22 (p—pe) (1.7.9)
with
1
Pe = > —1
and
2z
-2

Therefore, when z = 3 we have p, = 1/2 and A = 6.

ws-book9x6
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1.8 Finite-size scaling and scaling function for the average cluster size.

(i) The average cluster size is by definition
pRye s°n(s,p)
2oz sn(s,p)

For p — p., the denominator approaches the constant p..
Substituting the sum with an integral we find

x(p; L =o0) = (1.8.1)

x(p; L = o0) oc/ s°n(s,p) ds
1

- / 277G (s/s) ds

1

= /oo (use)* "G (u)se du
1/s¢

o0

= sng/ u?7TG(u) du
1/s¢

x |p—pc|_(3_7)/" (1.8.2)

as for p = p., s¢ = oo and the integral approaches a constant
number. Thus

v= (1.8.3)

g

(ii) For p — p., the correlation length
€(p) o< [p = pe| ™ = Ip—pe| x €77, (1.8.4)

that is,
X(&L=00) o |p—pe| " &/ forp—sp..  (1.8.5)

(iii) (a) There are only two relevant length scales in the problem,
the correlation length ¢ and the lattice size L. When
L <« &, L will be the limiting length scale taking the role
of ¢ and thus

X(EL) < L forp—po,l K LKE  (1.8.6)

(b) When L > £, we ‘do not know’ that the lattice is finite
and x(&; L) will be independent of the lattice size L. Thus
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we have
&/ for L> ¢
x(&L) =437,
LYY for LK &

=&MX(L/¢) (1.8.7)

where the scaling function

X(2) constant for x > 1 (18.8)
T) = 8.
2/ for x <« 1.
S|0pey)v
e Constant o m ——————— -

log X (x)

-3 -2 -1 0 1 2 3
log z
(¢) If p = p,, the correlation length £ = co and we are always
in the case L <« £ (x < 1). Thus by plotting log x (L, 00)
versus log L we get a straight line with slope «/v.
(iv) At p = p., & = 0o so according to Equation (1.8.6) the average
cluster size x(£ = oo; L) o< L"/¥. Hence we find

xE=coi)x [ " (s, pe, L) ds
= /Oo s>77G (s/LP) ds
1

_ / (WLP)2~7G(u) LP du
1/LP

— LD(37T) u277g~(u) du
1/LP

o« LPG=7) (1.8.9)
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since the integral approaches a number when L > 1. Thus

~=D(3-7). (1.8.10)
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1.9 Finite-size scaling and scaling function for the order parameter.

(i) (a) The order parameter Py (p; L = o0) is the probability
that (at occupation probability p) an arbitrary site be-
longs to the percolating infinite cluster.

For p < p. there are no percolating infinite clusters, so
P, (p; L = 00) = 0. The critical occupation probability
is the concentration p. above which a percolating infinite
cluster appears for the first time and the order parameter
becomes nonzero for p > p.. Clearly Poo(p = ;L =

o) = 1.
1.0

(b)

~~

8 0.8 | .
I
~ 0.6 R
&

Q 04 + R
Ay

02 r 1

0.0
0.0

P, 10

Occupation probability p

(c) The probability that an arbitrary site belongs to an s-
cluster is sn(s,p; L = o0). The probability that an arbi-
trary site belongs to any finite clusteris Yoo | sn(s,p; L =
00). The relation thus states that for a given site

ws-book9x6

P(in infinite cluster) = P(occupied) — P(in finite cluster)

o
s=1

(i) (a) For p — pf, the correlation length

() < (p—pe) ™ = (p—pe) < 7%,
that is,

(1.9.1)

Poo (&L = 00) o (p — pe)’ oc €877 (1.9.2)
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(b) There are only two relevant length scales in the problem,
the correlation length & and the lattice size L. When
1 K L <&, L will be the limiting length scale taking the
role of ¢ and thus

Po(&L) x LA for 1< LKL Ep—pe.  (1.9.3)

(¢) If p = p,, the correlation length £ = oo and we are al-
ways in the case L <« & (z <« 1). Thus by plotting
log Py (00; L) versus log L we get a straight line with slope
—8/v.

(iii) (a) The order parameter at p = p, in an infinite lattice is
zero. In the limit L — oo, the cluster number density
n(s,pe; L) tends to s77g(0), so also the right hand side
equals zero.

(b) At p = p.,& = oo so according to Equation (1.9.3) the
order parameter P, (¢ = oo, L) ox L~8/*. First, we use
Equation (1.95) in the question and substitute the scaling
law for the cluster number density. Since the main con-
tribution to the sum are from s > 1, we can replace the
sum by an integral and use the substitution u = s/LP to
find

oo
(€ = 00;L) = Y 5" 7[9(0) - g(s/L")]
s=1
o0
—g(s/LP)] ds

(L)' 77[g(0) - g(w)L” du

o LD<2—T> (1.9.4)

as for L > 1 the integral approaches a number (lower
limit approaches zero). Thus

Po(€ =00; L) x LA o« LP2~7 for L>> 1, (1.9.5)



January 11, 2007 13:46 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Answers to ezercises: Percolation 23

implying the scaling relation

_g =D(2-1). (1.9.6)
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1.10 Probability of having a percolating cluster on a lattice of size L.

(i) Since for p < p. there is no percolating cluster, we have

0 for p <
Mo (.1 = o00) = p<Dpe
1 for p = p..
1
0 _FZx
= g
8 |
= o4
02
% 02 YT 08 7
L

(ii) (a) There is a percolating cluster only if all L sites are occu-
pied. Therefore,

M (p; L) = p*,

see Figure above.
(b) We have

Moo (& L) = p* = exp (Inp”) = exp (LInp) = exp (—L/€)

using £ = —1/Inp.
(¢) When p — p_, the correlation length £ — (p. — p)—l S0
1/ = (p. — p). Therefore,

Moo (& L) = exp (—=(pe — p)L) = Fra[(pe —p)L] for p— p_,

where we identify the scaling function Fi4(z) = exp(—z).
Hence

constant forzx <1
Fra(z) = .
decay rapidly for z > 1.
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(iii) We assume that

Moo (p; L) = G (L/E) for p — pe,

(a) Since £ « |[p — pe|~ we have
Moo (5 L) = G (L/€) = G (Llp — pel*) = F (L*|p — pel) for p = .,

so that F(zx) = G(z/¥).

(b) In higher dimension, Il (p; L) will approach a step func-
tion at p = p. when L — oo. Hence, the limiting function
dll/dp = 6(p. — p) is a delta-function at p = p. when
L — oo.
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1.11 Real-space RG transformation on a square lattice.

(i) The real space renormalisation technique is based on a so-
called block site technique and has three basic steps:

1. Divide the lattice into blocks of linear size b.

2. Next, the coarse graining procedure takes place. The sites

in the blocks are averaged in some way and the entire
block is replaced by a single (super) site which is occupied
with a probability according to the renormalisation group
transformation Ry.
Important to keep the symmetry of the original lattice
such that the coarse graining procedure can be repeated.
The two operations create a new lattice with lattice con-
stant b times as large as in the original lattice.

3. Restore original lattice constant by rescaling length scales
by the factor b.

The coarse graining procedure in step 2 eliminates fluctuations
on scales smaller than the block size b, therby exploring the
large scale behaviour of the system upon iteration.

(ii) Tt is always a good idea to draw the situation!

o0 060 60O Oeo oo
o0 6O o0 o0 OO0

® O ON o0 OO0
® O O e O O (N

Fig. 1.11.1 The block of size 2 X2 contains a spanning cluster if all four sites are occupied
— probability p? — or three sites are occupied, one empty — probability 4p3(1 — p) — as
there are four different ways of placing the empty site. Also, four different configucations
contain a spanning cluster if two sites are occupied and two sites empty — probability
4p?(1 — p)2.

Thus

Ry(p) = p* + 4p°(1 — p) + 4p*(1 — p)°
=pt — 4p® + 4p°. (1.11.1)
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10
08
06 |-
c
Z
04
02+
00 . . . .
0.0 0.2 04 06 08 10

Occupation probability p
Fig. 1.11.2 The intersection between the graph of the renormalisation group transfor-
mation Ry(p) and the identity transformation R(p) = p are solutions to the fixed point
equation.

(iii) Solving the equation graphically yields

0 trivial fixed point
pr=<1 trivial fixed point
0.38 non-trivial fixed point.

The correlation lengths £ = 0 for the trivial fixed points p* =0
and p* = 1 correspond to the empty and fully occupied lattice,
respectively.
The non-trivial fixed point p* = 0.38 is accociated with the
critical occupation probability p. where the correlation length
is infinite.
When performing the real space renormalisation procedure,
length scales are rescaled by the factor b. Thus, the correlation
length £ — £/b only remains invariant if £ = 0, associated
with the trivial fixed points or £ = oo, associated with the
non-trivial fixed point. Since { « |p — p.|™”, the non-trivial
fixed point is identified as p..

(iv) We identify p. = p* = 0.38 (see (iii)). Let A be a constant.
Then

E=Alp—p” (1.11.2a)
¢ = A |Ry(p) — pel ™. (1.11.2b)
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Correlation length &(p)

0.0 0.2 04 06 08 10
Occupation probability p

If we start out with a finite correlation length, the rescaled correlation

length & = ¢/b will decrease (b > 1) with an associated flow in p-space. Starting out
with 0 < p < pe, the flow will be toward the trivial fixed point p = 0 where £ = 0. If
we start out with 1 > p > p., the flow will be toward the trivial fixed point p = 1 where
¢ = 0. If we start at the nontrivial fixed point p*, there is no flow since £ = oo, an p
remains at p* under iterations.

As ¢ = €/b we find

|p _pc|_u = ble(p) _pcl

=b|Ry(p) — R(pc)|™”, (1.11.3)
from which we find for p — p.
. L (1.11.4)
log (_prc )
Now
d
% = (4p® — 12p* + 8p)|pr—0.38 = 1.53 =
log 2
=_—°% —163. 1.11.
= fogins 03 (1.11.5)

The exact values in d = 2 are p, = 0.592746... and v =
4/3, respectively. The discrepancy is due to the approximate
nature of the real space renormalisation procedure considered
above. For example, the procedure may split a cluster into
two or more clusters which must affect the final results we
obtain. In general, one would have to introduce a hierarchy of
probabilities for each renormalisation step in order to retain
the exact properties of the original system. However, since we
are essentially only interested in the large scale features of the

ws-book9x6
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system, we truncate the hierarchy of probabilities and consider
only a single parameter, namely the occupation probability p
of a single site.

(v) Quantities which are universal are independent of the micro-
scopic details such as the underlying lattice structure and de-
pend only one the dimensionality of the problem at hand.
Examples are the critical exponents, such as 7,v, and o, de-
scribing the behaviour of quantities close to the phase transi-
tion and scaling functions. The critical exponents and scaling
functions are determined by the large scale properties of the
system. Unversality encapsulates the idea that various sys-
tems (e.g., site or bond percolation on different underlying
lattices) share the same large scale properties.

Non-universal quantities will depend on the lattice structure
as e.g. the critical occupation probability p..

1.12 Real-spacerenormalisation group transformation on asquarelattice.

(i) There are nine configurations that have a connected path from
A to B:

L “__ v e

o e o« e e

L LN

L e e o« e e
p* 4p*(1 —p) 4p*(1 —p)®

Adding the probabilities for these configurations, we find

Ry(p) = p* +4p°(1 — p) + 4p°(1 — p)*
= p* — 4p® + 4p°. (1.12.1)

(ii) (a) The fixed point Equation Ry(p) = p is solved graphically
by plotting the graph of Ry(p) versus p and locating the
intersections with the line Ry(p) = p.

By inspection, we find the three fixed points

0 trivial fixed point - empty lattice

K

p- =4 0.38 non-trivial fixed point
1 trivial fixed point - fully occupied lattice.
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1
Ry(p)=1p
087 — Ry(p) = p* — 4p° + 4p?
—~ 06 [~
S
Q‘? L
0.4
0.2~
| | | |
0.2 04 0.6 0.8 1
p

Fig. 1.12.1 The fixed point Equation R,(p*) = p* are p* = 0,0.38, 1.

(b) When performing the real-space renormalisation proce-
dure, length scales are rescaled by the factor b.
If we start out with a finite correlation length, the rescaled
correlation length & = £/b will decrease (b > 1) with an
associated flow in p-space as indicated below. Starting
out with p < p*, the flow will be toward p* = 0. If we
started out with p > p*, the flow will be toward p* = 1.

(¢) The correlation length & — £/b only remains invariant
if £ = 0, associated with the trivial fixed points p* = 0
(empty lattice) or p* = 1 (fully occupied lattice) or £ =
00, associated with the non-trivial fixed point p* = 0.38.
Since the correlation length is £ = 0 or £ = oo at the fixed
point, there is no characteristic scale and scale invariance
prevails.

(iii) (a) Let A denote a constant. Then

E=Alp—pc|™ (1.12.2a)
£ = A|Ry(p) —p| " (1.12.2b)

As & = €/b we find

[P — pe| ™" = b|Rb(p) — pe| ™ = b Ry (p) — R(pc)| ™",
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£/b 1

£/b*1
£/6°]

0 Pe 1

0 Pe 1
Fig. 1.12.2 (a) A sketch of the correlation length as a function of occupation probability.
The dotted line shows the position of pc. (b) The corresponding flow in parameter space.
from which we find for p — p.

1
,__ logb
log (ngépc))

(b) Now
dR
d—b o = (4p° — 12p? + 8p)|p+—0.38
~ 1.53 (1.12.3)
and hence
log 2
= —°% ~1.63. 1.124
v log1.53 ( )

The exact values in d = 2 are p. = 0.5 and v = 4/3,
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1.13 Renormalisation and finite-size scaling of the cluster no. density.

(i)

The square of the radius of gyration R?(s) for a given s-cluster
is defined as the average square distance to the centre of mass,

1 s
R2(S) = ; Z |T‘i - 'I“cm|2,
i=1

where r; denotes the position of the ith-particle and 7., the
centre of mass. The radius of gyration R? is the average of
R2(s) over all s-clusters, that is,

R, = /(R2(5)). (1.13.1)

The radius of gyration Rs; measures the linear extent of an s-
cluster. Thus if £ > R, the finite cluster is contained within
the box of size £ implying M (¢, Rs) = s. If £ < R, it appears
as if the cluster in infinite (we don’t know it is finite). At
P = pe, the cluster is fractal with M (¢, R,) oc #P, D being the
fractal dimension of the infinite percolating cluster. Thus

P for £ < Ry,

1.13.2
s RP  for > R, ( )

M4, Rs) {

since the mass of the infinite cluster at p = p. is proportional
to ¢P, it is natural to assume that also s oc RP. Thus

M(¢,R,) = tPm(L/R,), (1.13.3)
whit a crossover function

tant  f 1
m(z) o {Cons ant forws (1.13.4)

x~ P forz > 1

that iS, D1 =D and D2 =1.

From above, we have M (¢, R;) = RP for £ > R,. The real
space renormalisation transformation renormalises all length
scales by a factor b, e.g., Rs = Rs/b. Thus

s' = M(£/b,R,/b) = (R, /b)P = RP /bP = s/bP  (1.13.5)

where we have used £ > R, = £/b> R, /b.

ws-book9x6
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sn(s,pe; L) is the probability that a site belongs to a clus-
ter of size s in a lattice of linear size L per lattice site while
s'n(s',pc; L/b) is the probability that a site belongs to a clus-
ter of size s’ in a lattice of linear size L/b per lattice site.
As the number of clusters in the original and renormalised
lattice is the same we have
Lsn(s,pe; L) = (L/b)%s'n(s', pe; L/b) =

sn(s,pe; L) = b=%s'n(s', po; L/b), (1.13.6)
with s’ = 5/b”, see question (ii).
Given the scaling form of the cluster number density

n(s,p) = s "G(s/se) forp— pe, s> 1 (1.13.7)

As the characteristic cluster size s¢ oc £ where the correlation
length £ o |p — pc|~¥ we find

n(s,p) = s "G(s/€P). (1.13.8)
In a finite system at p = p, where L <« & = oo, one would
thus, using a finite-size scaling argument, expect

n(s,p) = s~ "G(s/LP). (1.13.9)
For s/LP < 1 & s < LP (i.e. L — o0), the cluster number
density must be independent of system size, leaving

n(s,p.) < s 7 = G(x) = constant =z < 1. (1.13.10)

Clearly s/LP > 1 & s> LP is very unlikely, so G(x) decays
rapidly for z > 1.
Combining Equations (1.13.8) (1.13.6) and (1.13.5) we find

s'TG(s/LP) = b (s /bP)(s/b7) TG ((Lé%)
= b_d_D+DT81_Tg(S/LD), (11311)

from which we conclude
—d—D+ Dr =0, (1.13.12)

implying the scaling relation

_d+D
L)

T

(1.13.13)

ws-book9x6
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Ezxercises

2.1 The entropy and the free energy.

(i) According to the Boltzmann’s distribution, the probability p,
to find an equilibrium system in a microstate r with energy
E, at temperature T is given by

_ exp(—pE,) 1

where 8 = 1/(kpT) and Z denotes the partition function.
Therefore, the entropy

S =—kp Zpr Inp,

=—kpy % exp(—BE,) [In (exp(—BE,)) — In Z]

(—=BE;) exp(—-BE;)

= kB InZ — kB ; 7
1 E,. exp(—BE;)
E
=kglnZ + <T—>
(ii) From part (i) we find
-1 (E)
InZ = . <S T ), (2.1.2)
so the free energy
F=—kgTInZ=-T ( - @) =(E)-TS. (2.1.3)

2.2 Fluctuation-dissipation theorem.
First we note that the average total energy

(E) = - (6216Z>H, (2.2.1)
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since

olmz\ _ 10Z
_( ap >H‘7%

0
- _%% (Z exp(—ﬂE{si}))

{si}

1
=7 Z exp(_/BE{s,'})E{s,'} (2.2.2)
{si}
However, the instantaneous total energy will, of course, fluctuate
around the average total energy. The magnitude of the fluctuations
is determined by the standard deviation AE where

(AE)® = ((E — (E))*) = (E® + (E)” — 2E(E)) = (E®) — (E)".

Differentiating twice In Z with respect to § we find

(82an> __ 0 (_6an)
g )y 0B OB Ju

0 1
{s:i} H

1 1 (02
=5 > exp(—FEEL + 55 (6_,8) > exP(=BE)) Bisiy
H

{si} {si}
1 olnZ 1
= >_exp(—PEu ) B,y + (W) 7 2 XP(=BE(:) By
{s:} H ™ {si}
= (E?) — (E)%. (2.2.3)
However,
Iz a<E>) (6(E)> oT d(ksp)~* 2
( 0B’ >H (8/3 i 0T )y 0B GE v
where C' denotes the heat capacity at constant external parameter,
such that

ksT2C = (E?) — (E)2. (2.2.4)
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2.3 Figenvalues, eigenvectors and diagonalisation.
(i) Assume x # 0 is an eigenvector for f with eigenvalue A, that
is
F(x) = Ax. (2.3.1)
Since f is linear,
flax) = af(x) = alx = A(ax) (2.3.2)

so ax is also an eigenvector with the same eigenvalue A.
(ii) Assume x # 0 is an eigenvector for f with eigenvalue A. If A
is the associated matrix for the linear function f then

Ax—)x=(A-A)x =0, (2.3.3)

where | is the identity matrix. If det(A — Al) # 0 the ma-
trix A — Al would be invertible and the only solution to the
Equation (2.3.3) would be the trivial solution x = 0. Equa-
tion (2.3.3) can only have non-trivial solutions x # 0 if the
matrix A — Al is not invertible. Therefore, we have

det(A — Al) = 0. (2.3.4)

Equation (2.3.4) is called the characteristic equation or the
secular equation for the matrix A and the solutions X are the
eigenvalues of A (or f).

(iil) We need to show that x; - xo = 0 assuming that

f(x1) =XAx; and  f(x2) = Aoxo with A\; # Xa. (2.3.5)
f(x1) - x2 = Aixq - %2 (2.3.6a)
X1 - f(X2) = AaXxg - Xa. (2.3.6b)
Since f is symmetric
A1X( - Xo = AoX{ - Xa. (2.3.7)
However, A\; # Ay from which we conclude

X1 *Xo = 0. (238)
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Consider the real and symmetric matrix

_ (exp(BJ + BH)  exp(—BJ)
T= ( exp(—p)  exp(B] —ﬂH)> - (239)

The eigenvalues Ay of T are the solutions to the charac-
teristic equation

det(T — Al) = 0. (2.3.10)
The determinant
exp(8J + BH) — A exp(—BJ)
exp(—3J) exp(8J — BH) — A
=X - [exp(B8J + BH)A + exp(8J — BH)]| + exp(28J) — exp(—26J)

=M% — 2exp(BJ) cosh(BH)\ + exp(23J) — exp(—243J),
(2.3.11)

det(T — Al) =

so the solutions to the characteristic Equation (2.3.10) are

2exp(BJ) cosh(BH) £ \/4 exp(28.J) cosh® (BH) — 4fexp(26.J) — exp(—25.J)]
L=
2

= exp(8J) <cosh(ﬂH) + \/(cosh2(ﬂH) -1+ exp(—4ﬂJ))

= exp(BJ) (cosh(BH) + \/sinhz(,BH) + exp(—4ﬂJ)) .
(2.3.12)
Since Ay > A_, the associated eigenvectors must be or-

thogonal. To determine the eigenvectors for T we must
solve the equations

TX+ = A+X+ (23133:)
Tx_ = A_x_ (2.3.13b)

or equivalently
(T — A+I)X+ = 0 (2313C)

(T-A_x_=0 (2.3.13d)
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(c) Determine explicitly the matrix U such that

U-'Tu = ()‘O’L /\0 ) : (2.3.14)
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2.4 Critical exponents inequality.
Given the thermodynamic relation

_ o [(O(M)?
X(CH—CM)—T( a7 )H (2.4.1)
As Cpr > 0 and x > 0 it follows that
M)\’
> _— . 4.
XC']-[_T( T )H (2.4.2)

Using the scaling of the different quantities close to the critical
point
x o< |T —T|™" for T — T,

Cygx|T-T|™¢ for T — T,

(M) x (T, —T)? for T — T, implying,

M

% o« —(T,—T)’~t for T — T,

so by substituting into Equation (2.4.2) we find

(Tc - T)77 (Tc - T)ia Z Tc (_(Tc - T)Bil)2 for T — ch
(T.-T)"""*>T, (T.—T)*2 for T — T
from which we can conclude that
—v-—a<l28-2&
yta>2-20&
a+28+y>2. (2.4.3)

Notice that the inequality can be repalced by an equality for d =
1,2,3, and 4 and the mean-field exponents for the Ising Model.

ws-book9x6
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2.5 The spin-spin correlation function and scaling relations.

(i) The spin-spin correlation function

55), (2.5.1)

where we use that the ensemble average operation (-) is a
linear operation and that the ensemble average of a constant
is the constant itself.

(if) Assuming that the system is translationally invariant, we sub-
stitute m = (s;) = (s;) and find

(siss)
(sjsi)
g(rj,ri) (2.5.2)

g(ri,r;) —m?

from which it follows that the correlation function is symmet-
ric and thus a function of the relative distance between the
spins at positions r; and r; only, that is,

g9(ri,r;) = g(|ri — r;]). (2.5.3)

(iii) (a) When |r; —r;j| — oo, the spins become uncorrelated, as-
suming that we are not at the critical point that is! Thus

g(ri,rj) = (sis;) — (si)(s;)
— (8i)(s;) — (si)(s;) for |r; —r;| = 00
—0. (2.5.4)

(b) By definition the spin-spin correlation function of spin 4
with itself

9(ri,1;) = (sis5) — {s3)(s:) = (s7) — (s:)°. (2.5.5)

Because s; = +1 & s2 = 1 we have (s?) = (1) = 1. Also
(si) =m, so

g(ri,r;) =1 —m?. (2.5.6)
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We assume the external magnetic field H = 0 so we can
replace m with mo(T). If T > T., the magnetisation
mgo = 0 so that

1 forT > T,
g(ri,r;) = ) (2.5.7)
1-—m3(T) for T < T..

The zero-field magnetisation per spin mgo(T") — =+1 for
T — 0, implying

g(r;,r;) >0 for T — 0. (2.5.8)

This result emphasises that the correlation function mea-
sures the fluctuations of the spins away from the average
magnetisation as is clear from the original definition

g(ri,rs) = ( (si — (s:)) (55 — (55)) )- (2.5.9)

(¢) Inthelimit J/kpT < 1 (high temperatures relative to the

coupling constant), the spins will be orientated randomly,
that is, there are no correlations between the spins, so we
expect g(r;,r;) — 0.
In the limit J/kgT > 1 (low temperatures relative to
the coupling constant), the spins will be aligned, that is,
there are no fluctuations away from the average spin, so
we expect g(r;,r;) — 0.

(iv) Because the susceptibility per spin diverges at the critical tem-

perature
x(T,0) < |T =T,|7" forT =T, (2.5.10)

the volume integral of the correlation function must also di-
verge at the critical temperature,

/ g(r)d’r / g(r)yr*tdr - 0o forT —T., (2.5.11)
|4 a

where a is a lower cutoff = lattice constant. This implies that
g(r) cannot decay exponentially with distance r at the critical
point T" = T, since this would make the integral convergent
in the upper limit. However, the divergence is consistent with
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an algebraic decay. Assuming
g(r) ocr= @~ for T =T,, all r = |r]| (2.5.12)

then

o0

/ g(r)ddr o / g(r)rd*1 dr
A% a
o /oo p(d=24n)pd=1 g,

oo
=/ r'=" dr
a

_ It i £ 2
N [In(r)]>° ifnp=2

that is, the integral will only diverge if the critical exponent
1 < 2. The divergence is logarithmic if n = 2 and algebraic if
n<2.

(v) (a) The correlation length diverges as &£(7,0) « |T. — T
for T — T,.. The critical exponent v is independent
of whether T, is approached from below or above, how-
ever, the amplitude might differ, as in the graph below.
For T > T., the correlation length sets the upper lin-
ear distance over which spins are correlated. It is also
identified as the linear size of the typical (characteristic)
largest cluster of correlated spins and measures the typ-
ical largest fluctuation away from states with randomly
oriented spins. For T' < T, the correlation length mea-
sures the fluctuations away from the fully ordered state,
that is, the upper linear size of the holes in the cluster of
aligned spins. There will be holes on all scales up to the
correlation length.

(b) When T # T, a finite correlation length £ is introduced
and

g(r|) x r=@=24MG (r/¢) for T = T,,  (2.5.13)
where

Ex|T. =TV forT —T.. (2.5.14)
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Fig. 2.5.1 The correlation length £(7',0) as a function of the temperature T in units of
the critical temperature 7T¢.

Consider the relation between the susceptibility per spin
and the correlation function

kT x / g(r)d’r. (2.5.15)
v
The left-hand side (LHS):
kgTx < |T =T, forT - T.. (2.5.16)

The right-hand side (RHS):

/ g(r)d%r /Oo p@=240) G (r/€)rt dr
%

0

- / TG (r/€) dr

0
= /oo(fg)l_ngi(f) di¢ with r = 7€

0
= £ /oo PG (F) dF

0
=T -1, "®" /Oo NGy (7) dif for T — TF.
0
(2.5.17)

The integral is just a number (which numerical value,
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however, depends on from which side T, is approached
due to the two different scaling functions G1), so we can
conclude by comparing the LHS with the RHS that

v =v(2—n). (2.5.18)

We assume T' < T, and consider the situation in zero
external field H = 0 with myg replacing m. We define

g(r) = g(r) + md = (sis;). (2.5.19)

For T < T, the correlation length £ < oo. As the corre-
lation length sets the upper limit of the linear scale over
which spins are correlated, the spins will be uncorrelated
in the limit r — oo as r > £. Thus

G(r) = (si85) = (si)(s;) = m& < (T.—=T)* for T =T, .

(2.5.20)
At T = T, where the correlation length in infinite, the
magnetisation is zero in zero external field, i.e., mo(T,) =
0. Thus

gr)=g(r) ccr (@24 o T =T, (2.5.21)

One would thus expect, a la finite-size scaling in percola-
tion theory, that

3(r) (=24 for r < £
gy x £(d=240) for p > €.

This is the reason for considering the function g(r) and
not g(r) since the latter will approach zero for r > &.
Thus for T' < T, where the correlation length is finite, we
expect

(2.5.22)

G(r) oc €772 o |T —T,|(4=247)  for > € (2.5.23)
implying the scaling relation

28=v(d—-2+n)od-2+n=25/v. (2.5.24)
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2.6 Diluted Ising model.

()

(iii)

A spin is situated on each lattice site. However, the spin only

interacts with with the nearest neighbours with probability p.

Identifying a nonzero coupling constant J;; = J > 0 as an

occupied bond and J;; = 0 as an empty bond, we have an

exact mapping onto a bond percolation theory problem.

(a) In order to minimise the energy, all spins within a perco-
lation cluster will point in the same direction. However,
spins belonging to different percolating clusters are not
correlated.

(b) Within a cluster, s; = s; so s;8; = s7 = 1 implying
(s;sj) = 11if the spins belong to the same cluster. If the
spins ¢ and j belong to different clusters, they are not
correlated at all, that is, given, e.g., that s; = 1 then
s; = 1 with probability 0.5 and s; = —1 with probability
0.5 leaving (s;s;) = 0. Hence

(si8;) = { 14,j in the same percolation cluster (2.6.1)

0 otherwise.

(¢) For p < p. all clusters are finite. Since the clusters are not
correlated, the average magnetisation is zero. For p > p.,
we can argue that all the finite clusters do not contribute
to the magnetisation which then becomes equal to Py, (p),
the density of the infinite cluster. The orientation of the
infinite cluster is random (in zero external field). Since

POO(p) :Oforp<pc
mo(p) = £P(p) (2.6.2)

(a) Pwo(p) is the probability for a spin to belong to the infinite
cluster. As tanh(sH/kgT) — 0 for H — 0, the last term
will vanish and

mo(p) = lim m(p, H) = +Psc(p)

consistent with the result of (ii)(c).
(b) The susceptibility in zero external field

_ (6_m>
X= oH H:O‘
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Assuming H < kT we use the
expansion tanh(sH/kgT) ~ sH/kgT + O ((sH/ksT)?).
Since Py (p) does not depend on the external field, we
find,

om = s2n(s,p) .
x=(37) =2 —F 7 xx@®xlp-p

H=0 s=1
as the divergence of the second moment of the cluster size
density n(s,p) is characterized by the exponent v when
P — Pe.

(iv) When p < p., the magnetisation in zero external field mq(p) =

0. Within a cluster (s;s;) = 1. In a cluster of size s there are
a total of s? different pairs, so 27 > > i(sisi) = g s’ We
can calculate the average susceptibility by summing over all
possible cluster sizes weighted by the cluster size distribution,
that is,

=Y Gor 3 Y usnio) = >l ).

s=1
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2.7 Second-order phase transition in a mass-spring system: Landau
theory.

(i) The total energy of the mass-spring system

U(8) = elastic potential energy + gravitational potential energy

1
= 5k(a0)2 + mg(acosf — a)

1
= ika202 + mga(cosd — 1)

(ii) (a) We expand the cosine to fourth order to find

U(6) = 2ka26? 1 ¢,z 1
()—5 a”6” + mga( —E—FZ—---— )
- g(ka —mg)6® + %04 + 06

where the coefficient of the fourth-order term is positive
while the coefficient of the second-order term is zero for
ka = mg and changes sign from positive when ka > mg
to negative when ka < mg.

(b) As the total energy U(8) is an even function in 8 (reflect-
ing the symmetry of the problem), all the odd terms in
the Taylor expansion around 6 = 0 are zero.

(¢) When ka > mg, the unique minimum is at §p = 0. When
ka = mg, the unique minimum is at 8y = 0. When ka <
myg, there are two minima at £6, # 0.
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ka > mg
----ka =mg

ka < mg

(b)

/2

to

ka/mg

—7/2

Fig. 2.7.1 (a) The energy, U(8), versus the angle §. The solid circles show the position
of the minima of the energy of the corresponding graph. For ka > mg, the minimal
energy implies § = 0. For ka = mg, the trivial solution § = 0 is marginally stable
However, for ka < mg, the minimal energy implies § = +6y # 0. (b) The angle of
equilibrium, fy as a function of the ratio ka/mg.

(d) The system is in equilibrium when dU/df = 0. Hence

au mga
w0 a(ka —mg)8 + 5

1
= mgab (ﬁ -1+ —02>
mg 6

=0 (2.7.1)

03
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with solutions

{O for 7’;—‘; >1
0= ka
+4/6(1 — ka/myg) for ;% <1
_ {0 for Te >1
+4/6[(m — m.)/m)] for Te < 1,

where m. = ka/g.

See previous Figure.

Landau suggested a simplistic general theory of second-
order phase transitions based on expanding the free en-
ergy in powers of the order parameter. In the absence of
a magnetic-like field, symmetry dictates that only even
powers of the order parameter appear in the expansion.
For example, in the Ising model

f=fo=ax(T -T.)m? +asm* with as,a4 >0,

where an expansion up to fourth order is sufficient to give
a qualitative description of second-order phase transitions
occurring at temperature T,. The term fy is an unimpor-
tant constant, while a4 > 0 in order for the free energy
to be physically realistic, i.e. not minimised by extreme
values of the order parameter.

As written, the left-hand side is given by a quartic polyno-
mial which always has one trivial solution, m = 0, and two
non-trivial solutions, m = £mg(T), so long as T' < T..
As T passes through T, from above, the trivial solution
becomes unstable and two stable non-trivial solutions ap-
pear. Below T., therefore, the order parameter of the
system is non-zero.

The order parameter of the mass-spring system is the
equilibrium angle 8y which is zero for m < m. and non-
zero for m > m,. The critical value of the variable mass
m, = ka/g.

2.8 Scaling ansatz of free energy and scaling relations.

Consider the Ising model on a d-dimensional lattice in an external
field H.
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The total energy for a system of N spins s; = +1 with
constant nearest-neighbour interactions J > 0 placed in
a uniform external field H is

N
By =-J) sisi—HY si,
1

(ig) i=

where the notation (ij) restricts the sum to run over all
distinct nearest-neighbour pairs.

Let M,y = Ef;l s; denote the total magnetisation and
(M) the average total magnetisation. The order param-
eter for the Ising model is defined as the magnetisation
per spin

(M)
m(T,H) = 1\}1_{1100 N

Consider the free energy F' = (E) — T'S. The ratio of
the average total energy, (E), to the temperature times
entropy, T'S, defines a dimensionless scale J/kgT. A com-
petition exists between the tendency to randomise the ori-
entation of spins for J <« kT, and a tendency to align
spins for J > kgT. In the former case, the free energy
is minimised by maximising the entropic term: the mag-
netisation is zero because the spins point up and down
randomly. In the latter case, the free energy is minimised
by minimising the total energy: the magnetisation is non-
zero because the spins tend to align. Since the entropy
in the free energy is multiplied by temperature, for suffi-
ciently low temperatures, the minimisation of the free en-
ergy is dominated by the minimisation of the total energy.
Therefore, at least qualitatively, there is a possibility of
a phase transition from a phase with zero magnetisation
at relatively high temperatures, to a phase with non-zero
magnetisation at relatively low temperatures.

We assume that the singular part of free energy per spin is a gen-
eralised homogeneous function,

f(t,h) =b=df (¥ t,bv"h) fort— 05, h = 0,6>0. (2.8.1)
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The critical exponent « associated with the specific heat
in zero external field is defined by

c(t,0) o [t|7% fort — 0.
The specific heat is related to the free energy per spin:

c(t, h) o1 oc b2V 11 (pYr, b¥r h)
) 8t2 )

Choosing b = |t|~'/% and setting h = 0 we find
_ 2y,—d
c(t,0) o< [t|” v f"(%1,0) fort — 0%,
and we identify
2yt —d
o= —=——

Yt

The critical exponent 3 associated with the order param-
eter (magnetisation per spin) in zero external field is de-
fined by

m(t,0) o< |t|® fort — 0.

The magnetisation per spin is related to the free energy
per spin:

m(t,h) o< — (%) oc b¥R 4 f1(bYt, bYn B).

Choosing b = |t|~'/% and setting h = 0 we find

d—

Yh ' +
m(t,0) o |t| 77 f'(£1,0) fort— 0%,

and we identify

d—yn
Yt

b=

The critical exponent ~ associated with the susceptibility
in zero external field is defined by

x(t,0) o< |t|77 for t — 0.
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The susceptibility is related to the free energy per spin:

2
x(t, h) oc — (%) oc b2yn=d £ (pYet, ¥R B).

Choosing b = [t|~'/¥* and setting h = 0 we find
2y, —d
x(t,0) oc|t|” v fort—0

and we identify

2yp — d
y= Yh .
Yt

The critical exponent § associated with the order param-
eter in the critical temperature is defined by

m(0, h) o sign(h)|h[*/®  for h — 0.

The magnetisation per spin is related to the free energy
per spin:

m(t,h) x — o1 oc bYn 1 (bYtt, bYn h).
oh
Choosing b = |h|~'/¥» and setting t = 0 we find

d—yp
m(0,h) o |h| ¥»  for h — 0

and we identify

Yh
)=
d—yn
We find
2 —d+2d—2 2yp — d
a+28+4~= Yt + Yn + 2yn

Yt
=2
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and

ﬂ(&—l):d_yh( Yn _1)

Yt d—yn
_d—uyn <2yh_d>
o d—yn
_ 2yp—d
a Yt

53
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Ezxercises

3.1 Power-law probability density with exponent —2.

(i) As P(h) =0 for h < hin, the condition for normalisation is

/ P(h) dh = / Ah~? dh
hmin h

min

= A[_h_l]g?nin
= Ah i
=1 (3.1.1)
implying that
A = hpin- (3.1.2)

(ii) (a) By definition, we have to integrate the probability density
over h > Aozt

P(h > hpas) = / Bminh % dh

mam

= hmzn[_h_l]z?naz
hmin

= — 1.
hmaz (3 3)

(b) The average number of days one would have to wait to
see one event with A > h,,q. 1S
]‘ — hma:c
P(h Z hmaw) hmzn '

(iii) (a) There is no upper limit to the level of the river, so it is
impossible to guarantee safety forever.
(b) There are 365N days in N years. The probability of hav-
ing no overflow in 365N consecutive days is

B 365N
P(No overflow in 365N days) = (1 — mm) S p

hma:}: -
1— hmin > p36\15N =
hmaz —
h.
himaz > -
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(¢) Inserting N =10,p = 0.90 and A = 0.01 m we find

.01
hmaz Z 0.0 m—1 =~ 346 m.
1 — 0.903850

(iv) (a) The average level

(h) = / Buminh W2 dh
h

min

= hmm/ h=1 dh
Rmin
= hmin[ln(h)]7°
= o0. (3.1.4)

Note that this is a so-called marginal case where the av-
erage level diverges logarithmically. A power-law proba-
bility with an exponent less than —2 would have a finite
average value, while a power-law probability with an ex-
ponent greater than —2 would diverge algebraically.

(b) One could imagine that there exists an upper cut-off, h,,
in the level of the river for the probability density such
that P(h) = 0 for h > h.. Another possibility would be
to modify the power-law exponent such that it is slightly
less than —2.



January 11, 2007 13:46

56

WSPC/Book Trim Size for 9in x 6in

Complezity and Criticality

3.2 Olami-Feder-Christensen model.

(i)

(i)

(iii)

Generally we have

[ee)
convergent a>1
Yoo = QOMTEE (3.2.1)
divergent a<l

s=1

Since the avalanche-size probability is normalised:
o0
Y P(s)<co=r>1 (3.2.2)
s=1

and the average avalanche size diverges:

o0

(s) = ZsP(s) = i st =00 =7, < 2. (3.2.3)

s=1 s=1

Alternatively, use the following argument
oo [e’e}
3 P(s) ~ / P(s)ds o [s' =] (3.2.4)
s=1 1
which is only convergent in the upper limit for 7, > 1 and
ad o
(s) = ZsP(s) A / sP(s)ds o [$277]5° (3.2.5)
s=1 1
which is only divergent in the upper limit for 7, < 2 (logarith-

mically so for 75, = 2).

As the cutoff event size s¢ diverges for @ = a.,the limiting
function of P(s) will be a pure power law, that is,

s fors>1
P(s) = {0 otherwise

S oo S¢
(sF) = Zskp(s) ~ / sk P(s)ds = / sk Tads
s=1 1 1

1+k—7s
08 S§

that is,
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10 10

Event sizes

(iv) The dynamical rules of the model are motivated by the dy-

namics of earthquakes in which there are two separate time
scales. Ome is defined by the motion of the tectonic plates,
and the other is the duration of an earthquake. The former
time scale is much larger than the latter. We separate the
time scales by considering the earthquake as instantaneous,
that is, the system is not driven during an earthquake.

The algorithm for the system is as following:

e Define random initial strains in the system.
e Strain is accumulated uniformly across the system as the

rigid plates move.
When the strain in a certain site is above the threshold
value Fy;, this site will relax according to the equation

an %an+aFij,

where F),,, denote the nearest-neighbour blocks of the re-
laxing block (4,7) and o = K/(4K + Kp).

This may cause neighbouring sites to exceed the threshold
value, in which case these sites relax simultaneously, and
so on. The triggered earthquake will stop when there are
no sites left with a strain above the threshold value.

e Strain starts to accumulate once again.

As the relaxation dissipates Fj; but an amount of 4aF;; is
redistributed, we refer to 4a as the level of conservation.
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(v) (a) The model is considered to be critical if, for a given value

of «, the event size distribution P(s) is a power law with a
cutoff size that diverges with systems size L. This will also
imply that the average event size will diverge with system size.
If, on the other hand, the cutoff size does not increase with
system size, the model would be non-critical.

Clearly, for a = 0, the blocks do not interact at all, and all
the avalanches are of size 1, that is, the model is non-critical.
For a = 0.25, the model is conservative (conservation level =
1), and all the dissipation will take place at the boundary only.
Thus one would expect the average avalanche size to diverge
with system size, consistent with a power law distribution
P(s).

As the model is non-critical for @ = 0 and critical for a = 0.25
there must be a crossover at some critical value a, from a
critical to a non-critical behaviour as a decreases from 0.25 to
0. Where the transition happens is still an unsettled question.
There are claims that a, = 0.25 and a, = 0.

3.3 Modified Bak-Tang- Wiesenfeld model on a tree-like lattice.

(i) (a) Each of the N sites can be in one of h. state, h; =

0,1,...,h. — 1. Thus there are a total of hYY stable con-
figurations.

(b) Stable configurations are either transient or recurrent con-
figurations. Transient configurations are not encountered
once the set of recurrent configurations is reached. The
set of recurrent configurations is commonly known as the
attractor of the dynamics.

(¢) Given a configuration in the set of recurrent states. Sim-
ply by adding h.—1—h; grains to each of the i sites we re-
cover the minimally stable configuration with h; = h, —1
for all sites 1.

Adding one grain at the root of the tree-like struc-
ture in the minimally stable configuration will induce an
avalanche in which all the grains will leave the system at
the boundary and leave the system empty.

Since the empty configuration is a recurrent state, all sta-
ble configurations will be recurrent as they can be reached
from the empty configuration by adding grains in a pre-
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scribed way.

A site with h = h. — 1 will topple if it receives one grain.
Such sites occur with probability P, ;. Sites with A <
h. — 1 will not topple upon receiving one grain. Such
sites occur with probability 1 — Py, _;. Since a toppling
site adds one grain to its h, downwards neighbours the
probability of causing b new sites to topple is determined
by the binomial distribution

he _
pb:(b>PII:C1(1_PhC—1)hC ’ b:(])"'ahc-

The number of trials are h., each with a probability Py, _1
of causing a new toppling. Therefore, the average number
of new topplings

hc
(b) = prb = hePp 1.
b=0

(iii) Since the probability P, must be normalised,

he—1 1
ZPh=hCPh=1@Ph=—.
h=0 hc

Therefore, clearly

(b) = thh,C—l =1.

This is the critical branching ratio for a branching process.
Thus the model self-organised into a critical state in which
there are avalanches of all sizes, limited by the system size

only.

(iv) (a)

In a tree with h, = 2 in a stable configuration, each site
can be in one of two states, either h; = 0 or h; = 1. Define
for now sites with h; = 1 as occupied sites and sites with
h; = 0 as empty sites. Then the probability that a site
is occupied is Pp=1 = 1/h. = 1/2, the critical occupation
probability of percolation model on a Bethe lattice with
z = 3. However, the sandpile model organises itself to
this critical state.

When adding a grain to an arbitrary site, it topples with
probability P, _1. Define B to be the contribution to the
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average avalanche size from a given sub-branch. Then the
average avalanche size is

(s) = Py._1 (1 + hB), (3.3.1)

where the first term is the contribution from the toppling
site itself and the second term is the contribution from the
h¢ sub-branches. If the parent of a sub-branch has h; <
h. —1 there is no contribution. If, however, the parent of
a sub-branch has h; = h. — 1, that parent contributes its
own toppling together with a contribution B from each of
its h. subbranches. The contribution from a subbranch
is identical to the contribution from a branch because all
sites are equivalent. Thus

B =0x (]. - Phc—l) + []. + hCB] X Phc—l

from which

Substituting this result into Equation (3.3.1) we find

_ Py, 1
1— hoPy s

Py, 1
=Py g (14 hy—the
(s) = P, ( h l_hcphc_l)

which diverges for Py,_1 — 1/h,.

3.4 Oslo model and moments.

(i) Starting from an empty system, a pile will gradually form
when adding grains. However, eventually, after a transient
period, the pile will cease to grow and, on average, the number
of grains added at the left boundary will leave the system at
the right boundary. Once the system has reached the attractor
of the dynamics, the avalanches initiated by adding grains at
the left boundary is only limited by the size of the system.
The system has, by itself, organised into a state in which the
average avalanche scales with system size, the signature of
criticality.

(ii)) (a) Define the local slope z; = h; — hiy1,¢ = 1,... L with

hr+1 = 0. In the one-dimensional Oslo model, the critical
slopes, z£(t), dependent on position and time.
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The algorithm for the dynamics is defined as follows.

1. Place the pile in an arbitrary stable configuration with
z; < zf for all i.

2. Add a grain at site i = 1, that is, 21 — 21 + 1.

3. If z; > 2§, the site relaxes and

2i =2z —2

Zi+1 = Zi+1 + 1

except when boundary sites topple, where, respec-

tively,
21— 21— 2 2, —zp—1
29—~ 29+1 fori=1 21— 2r—1+1 fori=L.

Choose a new critical slope z{ at toppling site. A
stable configuration is reached when z; < 2{ for all 1.
4. Proceed to step 2. and reiterate.

(b) The pile will eventually reach a statistically stationary
state where, on average, the number of grains added will
leave the system at the open boundary. Configurations
are either transient configuration or recurrent configu-
rations. Recurrent configurations will appear again and
again if we wait long enough.
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(iii) The kth moment
(s*y = Z sk P(s, L)
s=1
— Z Sk—rsg(s/LD)
s=1

~ / sk G(s/LP)ds
1

= / (uLP)*="G(u)LPdu with u = s/L”
1/LP

— LD(k+17Ts) / ukasg(u)du
1/LDP

For L > 1, the lower limit of the integral approaches zero,
and the integral becomes just a numerical factor. Therefore,

oo

(s*) m LP(k+1-Ts) / uF""G(u)du for L > 1

0
o LDG+1-70)

(iv) (a) Plotting log(s) versus log L, we see that the data fall on
a line with slope approximately 2.

6

10 ET T T T T T /‘ E
10°F E
Ol *
~ L
wp 3
10°=L w S 4
10 L 10
Therefore
(s) o L? o« LP?=7)  for L > 1, (3.4.1)

implying the scaling relation

D2 —15) = 2. (3.4.2)
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(b) Plotting for example log(s?) versus log L, the data fall on
a line with slope approximately 4.2.

10°g T

102E E

w0 E

5 101% e ’
109* *
ad ]
L
Thus
D2—-15)=2 (3.4.3a)
D3 —15) =42 (3.4.3b)
from which, by subtraction
D =22 (3.4.4)

and using the scaling relation in Equation (3.4.2)

T, =2-2/D~11. (3.4.5)

3.5 Moment ratios and universality.

(i) Given that the avalanche-size probability

P(s;L) =as ™G (s/bL”) fors>1,L>1

then be rearranging we find

%STSP(S;L) =G (s/bLP) fors>1,L> 1.

For a given system a and b are constant. The L.H.S. is a func-
tion of two variables s and L while the R.H.S. is a function of
one variable only, s/bLY. Hence by plotting the transformed
avalanche-size probabilities %s“P(s; L) versus the rescaled
avalanche size, s/bL?, the data should, for s > 1 collapse

onto the graph for the scaling function G.

ws-book9x6
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Fig. 3.5.1
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(a) The avalanche-size probabilities, P(s;L), versus avalanche size, s. The

four curves correspond to lattices of increasing size marked with lines of increasing dash
length. (b) The transformed avalanche-size probabilities, %s“ P(s; L), versus avalanche

size, s. (b) Plotting the transformed avalanche-size probability, %s“‘ P(s; L), versus the

rescaled avalanche size, s/ bL P, produces a data collapse onto a universal scaling function
G when using the appropriate exponents D and 7s.
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(ii) (a) Assuming the scaling form of the avalanche-size proba-
bility is valid for all s and converting the sum into an
integral we find

(s*y = i sk P(s; L)
= iask’ng (s/bLD)

w/ ask—7s¢ (s/bLD) ds
1

= / a(ubLP)*="G (u) bLPdu with u = s/bLP
1/bLP

= q(bLP)Hk-7s / ub=7 G (u) du
1/6LP
— LD(1+k7TS)ab1+k7TS /OO ukf‘rsg (U) d’l.b,
0
since the lower limit of the integral tends to zero as L —

oco. Hence we identify the universal exponent and the
non-universal amplitude

v =D+ k—1y) universal

oo
Ty :ab1+’“_“/ u*~":G (u) du non-universal.
0

(b) The moment ratio

<Sk)<8)k_2 _ FkLD(1+k7T3)(FlLD(27TS))k72 _ Fkrlf_Q
<82>k—1 (FQLD(3_TS))k_1 Fl2i:—1

9k =

which is clearly independent of the non-universal con-
stants a and b.

(iii) (a) In the derivation above, we assumed the scaling form of
the avalanche-size probability. However, that is only valid
for L > 1. Hence only for L — oo will the moment ratio
gr be independent on system size.

(b) Model A and B might be in the same universality class.
However, Model C' must belong to another universality
class. Otherwise the asymptotic value of g3 cannot be
different.



