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Abstract

Basis set superposition error (BSSE) in density-functional calculations occurs when
the extended Kohn-Sham orbitals are expanded in localised basis sets, but is absent
when a plane-wave basis is used. Elimination of BSSE is essential for the accurate
description of intermolecular forces. Linear-scaling methods are formulated in terms
of local orbitals, making plane-waves an inappropriate choice of basis. In this work
the BSSE in linear-scaling methods is studied in the context of hydrogen bonds. In
particular it is shown that BSSE is eliminated by optimizing the local orbitals in
situ using a systematic basis set equivalent to a set of plane-waves.

Key words: linear-scaling, density-functional theory, basis set superposition error
PACS: 31.50.Bc, 71.15.Ap, 82.30.Rs

1 Introduction

Density-functional theory (DFT) has had a profound impact on science and
technology, well beyond the traditional realms of quantum-mechanical sim-
ulations into fields as diverse as geology [1], biochemistry [2] and microelec-
tronics [3]. The broad multidisciplinary appeal of DFT stems from its ability
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to provide a sufficiently accurate description of electron correlation for most
purposes at a computational cost which scales very favorably (with the cube of
the system size V) compared with correlated wave function methods such as
coupled cluster or configuration interaction (which typically exhibit N5 to N7
scaling). Nevertheless, even with the most powerful computers, the N? scaling
of DFT still presents a bottleneck which restricts the size of simulations to a
few hundred atoms and thus limits their predictive power and ability to pro-
vide insight into complex processes in real materials. In recent years there has
therefore been much interest in the development of linear-scaling or order-/N
methods [4,5] which have the potential to revolutionise the scope and scale
of DFT calculations to include entire biological molecules and nanostructures
consisting of many thousands of atoms. However in spite of the multiplicity of
proposed computational schemes very few successful applications have been
reported. Most importantly, there is a severe lack of studies of the accuracy
attainable with linear-scaling methods and consequently much uncertainty
about their ability to achieve the necessary level of detail to describe correctly
the systems they are intended to tackle. This paper compares the accuracy
of three approaches to linear-scaling methods for the sensitive and important
case of relatively weak hydrogen bonds, which are essential for the structural
stability and function of biomolecules such as proteins, DNA and sugars and
which are also relevant in nanoscience where many potential applications are
expected to operate in an aqueous environment.

Basis set superposition error (BSSE) in the solution of the Schrédinger equa-
tion was first addressed for the calculation of accurate intermolecular po-
tentials [6]. The interaction potential (the negated binding energy) of two
molecules A and B is defined by

Apxp = Eap — Ep — Ep (1)

where the total energies of the dimer Exp and of the two isolated molecules E5
and FEp are obtained from separate calculations and structural relaxation of
the molecules upon formation of the dimer is neglected. Error arises when the
parameters or procedures are not consistent between these three calculations.
Boys and Bernardi [7] identified several causes of error including the use of
different integration grids for the calculation of matrix elements and different
basis sets for the expansion of the wave functions. The methods considered
in detail here employ identical uniform real-space grids for all calculations,
eliminating the former source of error. The latter is known as BSSE and plays
a central role in this study.



2 Methods

Figure 1 provides a schematic representation of the source of BSSE and the
commonly-used counterpoise correction [7] first invoked by Jansen and Ros [6]
to treat it. Basis functions (shaded gray) are localised and associated with
particular atoms (white disks). The total energy of the dimer is calculated
naturally using the basis functions associated with both molecules. For an
isolated molecule, the total energy may be obtained using only the basis func-
tions associated with that molecule. However this simple approach restricts
the variational freedom of the molecular calculations with respect to that of
the dimer, resulting in an overestimate of the binding energy which can be
significant [8]. The counterpoise correction uses the basis functions associated
with both molecules in calculating the total energies of the isolated molecules,
so that identical basis sets are used for all three energies in Eq. 1. Mayer’s
chemical Hamiltonian approach [9] provides an alternative a priori BSSE-free
scheme.

The plane-wave pseudopotential method [10] has established itself as the lead-
ing workhorse for DFT calculations. The main advantage of a plane-wave basis
in the context of this work is that being homogeneous and unbiased by atomic
positions it is free of BSSE. The corresponding drawback is that it is relatively
inefficient at treating systems with significant vacuum regions such as isolated
molecules.

Linear-scaling methods appropriate for non-metallic systems exploit the “near-
sightedness” of quantum many-body systems [11] exhibited in the exponen-
tial localisation of the Wannier functions [12] and single-particle density-
matrix [13]. In all of these methods, local orbitals play a key part. For exam-
ple, in the ONETEP method [14] the density-matrix is expressed in separable
form [15] as

p(71,75) = 2{; Do (1) K () (2)

in terms of a density kernel K% and a set of local orbitals called non-orthogo-
nal generalised Wannier functions (NGWFs) {¢,} [16] centred on the atomic
positions. Linear scaling is obtained by truncating the kernel and localizing the
NGWFs according to variational spatial cut-offs. Most linear-scaling methods
fall into two categories: the first equivalent to optimizing the kernel only [17-
19] for a fixed (but potentially large) set of local orbitals and the second
involving both kernel and NGWF optimisation [16,15,20]. In the first case,
the local orbitals are optimised beforehand for isolated atoms of each species
and act as the basis set. In the second case the optimisation occurs in situ
during the self-consistent calculation. Since atom-centred local orbitals are
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Fig. 1. Basis set superposition error occurs in the calculation of the binding energy
of the dimer shown in (a) when the molecular energies are calculated as in (b) and
(c) with only the basis functions (in grey) of the atoms (white disks) associated
with the individual molecule. The counterpoise correction calculates the molecular
energies as in (d) and (e) with the same basis set as for the dimer (a).

involved in both cases, these methods are expected to be susceptible to BSSE.
However in the ONETEP method the NGWF's are iteratively improved during
the calculation by optimizing an expansion in terms of the psinc basis (defined
in [21]) which is equivalent to a set of plane-waves. This work shows that this
optimisation eliminates BSSE.
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Fig. 2. Water dimer geometry showing the hydrogen bond O-H distance d.
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Fig. 3. Interaction potential of a water dimer obtained using a minimal basis set of
fireballs

3 Results and discussion

The system selected for this study is the water dimer illustrated in Fig. 2, for
which there are comprehensive reviews of previous experimental [22] and first-
principles computational [23] work. The water dimer is bound by a medium
strength hydrogen bond which has been important for the development of the
theory of intermolecular forces and is seen as a paradigm of the bonding upon
which many biochemical processes so sensitively depend. As a relatively weak
bond, it is a challenge for DFT [24,25] and calculations of its binding energy
are very sensitive to BSSE [26]. For the purposes of this study comparison is
made with results from the BSSE-free plane-wave CASTEP code [27] by varying
the hydrogen bond O-H length d while the orientation and internal geometry
of the water molecules remained fixed: structural rearrangements [28] are not
considered. As a result, the geometries do not correspond to experimental or
computationally optimised structures. The ONETEP and CASTEP calculations
used the same norm-conserving pseudopotentials [29] and gradient-corrected
exchange-correlation functional [30]. Equivalent energy cut-offs were used for
the psinc and plane-wave basis sets.

Figure 3 compares the interaction potential curve from CASTEP with results
obtained from ONETEP without in situ optimisation of the NGWFs, for which
spherically confined pseudoatomic orbitals (fireballs) [31] are used, as in the
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Fig. 4. Interaction potential of a water dimer obtained using a minimal basis set of
local orbitals pre-optimised for isolated water molecules (MOs)

SIESTA [17] and DMol®[32] codes. This particular choice mimics the use of a
minimal LCAO set and involves only kernel optimisation. The uncorrected
result overestimates the binding energy by almost 100%, and while the coun-
terpoise correction reduces the error by half, significant disagreement with the
CASTEP result remains. This demonstrates the presence of significant BSSE
and the need for high-quality basis sets to describe hydrogen bonds. As BSSE
results from the reduction in variational freedom for the isolated molecules
compared to the dimer, when the dimer basis is used for all three calcula-
tions the molecular energies are lowered significantly: by about 65 meV each
at d=1.8 A. While this only amounts to a 0.4% change in the total energy,
this correction is significant in calculating the binding energy where significant
cancellation occurs in Eq. 1. BSSE is therefore present as expected in linear-
scaling methods with fixed local orbitals. While the error may be reduced by
employing larger sets of local orbitals than the minimal set used here, the
counterpoise correction is always necessary [33].

Since BSSE arises from a relatively poor description of the isolated molecules
compared to the dimer, one possible solution which would still retain fixed lo-
cal orbitals for large-scale calculations would be to use pre-optimised NGWF's
corresponding to molecular orbitals (MOs). For the case of the water dimer,
this scheme involves first optimizing NGWFs with ONETEP for the isolated
water molecules. These NGWFs are then used as the fixed local orbitals for
the dimer calculation, in which only the kernel is optimised. In the general
case, this approach is essentially equivalent to a third linear-scaling method,
Yang’s density-matrix divide-and-conquer scheme [34], in which a large sys-
tem is split into smaller components for which density-matrices are calculated
before being combined to generate an estimate of the total density-matrix of
the whole system. Figure 4 compares the CASTEP result with this choice of
pre-optimised NGWFs, which lowers the total energy of the isolated water
molecules by almost 0.3 eV. BSSE is indeed eliminated since there is nothing
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Fig. 5. Interaction potential of a water dimer obtained using a minimal basis set of
fully optimised orbitals (NGWF's)

to be gained by adding the MOs of a second molecule to the local orbital set
already optimised for the first. Instead of the overestimation of the binding
energy in Fig. 3 there is now significant underestimation since the MOs give
a poor description of the dimer when there is significant interaction between
the molecules at short distances, and this is reflected in the long equilibrium
bond distance predicted. These results demonstrate that while this divide-
and-conquer approach does avoid BSSE, it does not provide a sufficiently
accurate solution for hydrogen-bonded systems, and full optimisation of the
local orbitals is required for the system as a whole.

Allowing full optimisation of the NGWFs as well as the kernel for both
molecules and dimer results in Fig. 5. The dimer energy is now lowered sub-
stantially (by over 0.1 eV for d=1.8 A) compared to the use of fixed local
orbitals. BSSE is again notably absent and furthermore there is extremely
close agreement between the CASTEP and ONETEP interaction potential curves.
Table 1 gives results within the local density approximation for the equilib-
rium bond length and binding energy for fully converged calculations from
ONETEP, CASTEP and NWChem [35], an all-electron code with an “aug-cc-
pVTZ” Gaussian-type orbital basis. The equilibrium bond lengths for this
orientation agree to 0.3% and the bond energies to 2%. This demonstrates
that in situ optimisation of the NGWF's in terms of the systematic psinc basis
is indeed sufficient to eliminate BSSE entirely and to describe the hydrogen
bond with plane-wave accuracy.

4 Conclusions

For subtle interactions like hydrogen bonds important for many potential ap-
plications of linear-scaling methods, it has been demonstrated that fixed local



Table 1
Comparison of bond lengths and binding energies for the water dimer. (1 kcal mol~!
= 43.4 meV)

Bond length  Binding energy

(A) (meV)
ONETEP (1300 eV) 1.790 182
CASTEP (1300 eV) 1.785 178
NWChem (aug-cc-pVTZ) 1.779 181

orbital schemes suffer from BSSE and divide-and-conquer approaches are in-
sufficiently accurate. In contrast the ONETEP method is BSSE-free and attains
the accuracy of traditional plane-wave and near-complete Gaussian basis cal-
culations as a result of the in situ optimisation of local orbitals.
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