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We present an implementation of time-dependent density-functional theory (TDDFT) in the lin-
ear response formalism enabling the calculation of low energy optical absorption spectra for large
molecules and nanostructures. The method avoids any explicit reference to canonical representations
of either occupied or virtual Kohn-Sham states and thus achieves linear-scaling computational effort
with system size. In contrast to conventional localised orbital formulations, where a single set of
localised functions is used to span the occupied and unoccupied state manifold, we make use of two
sets of in situ optimised localised orbitals, one for the occupied and one for the unoccupied space.
This double representation approach avoids known problems of spanning the space of unoccupied
Kohn-Sham states with a minimal set of localised orbitals optimised for the occupied space, while
the in situ optimisation procedure allows for efficient calculations with a minimal number of func-
tions. The method is applied to a number of medium sized organic molecules and a good agreement
with traditional TDDFT methods is observed. Furthermore, linear scaling of computational cost with
system size is demonstrated on (10,0) carbon nanotubes of different lengths. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4817330]

I. INTRODUCTION

In recent years, there has been increasing interest in the
optical properties of nanomaterials. Nanostructured materials
have potential applications in photovoltaics and photoelectro-
chemical cells1–4 as well as uses as optical sensors.5 Quan-
tum confinement and surface effects play a crucial role in
the electronic properties of these materials,6 while their large
number of atoms makes them much more challenging to treat
with conventional electronic structure methods than their bulk
counterparts. It is therefore vital to develop efficient ways of
computing optical properties of large scale systems to high
accuracy.

Time-dependent (TD) density-functional theory (DFT)7

has become a very successful method in recent years in deter-
mining excitation energies and optical spectra of molecules
and nanoclusters.8–10 For many commonly used approxima-
tions to the exchange-correlation functional, the energies of
local excitations in a variety of systems are typically being
predicted to within a few tenths of an eV, while non-local
excitations are often significantly underestimated.11 TDDFT
is appealing for large scale applications since it shows a
greater flexibility in computational cost than more compli-
cated many-body techniques like the GW approximation
and the Bethe Salpeter equation.10 For local and semi-local
exchange-correlation functionals, which already deliver a
good description for excitations where the electron-hole in-

a)Electronic mail: tjz07@imperial.ac.uk

teraction is not significant, TDDFT is considerably cheaper
computationally than many-body techniques. More sophisti-
cated functionals, which come at greater computational cost,
can recover the full solution to the Bethe-Salpeter equation,12

thus allowing a balance between accuracy and computational
effort in TDDFT calculations. Continuous improvement in
TDDFT algorithms over recent years13 means that calcula-
tions on hundreds of atoms are now computationally feasible.
However, even though TDDFT in many commonly used ap-
proximations to the exchange correlation functional is compu-
tationally cheaper than more advanced methods of calculating
optical spectra, it still exhibits a cubic scaling behaviour with
system size in conventional implementations, putting a severe
limitation on the system sizes that can be studied. In ground-
state calculations with DFT,14, 15 the development of linear-
scaling methods16, 17 has been specifically aimed at enabling
the treatment of large scale systems with up to hundreds of
thousands of atoms.18 Linear-scaling DFT calculations have
been performed on large biomolecules and nanoparticles.19

Thus ideally, one would like to extend the ideas of linear scal-
ing which have proved to be so successful in ground state DFT
to excited state calculations in TDDFT.

Fully linear-scaling formulations of TDDFT have been
known for almost a decade.20 However, these formulations
rely on propagating the TD Kohn-Sham equations explicitly
in time. The time-dependent response of the system to an ex-
ternal field can be determined at any instance, which, after
a Fourier transform into the frequency domain, contains in-
formation about the frequency dependent-response and thus
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the optical spectrum.10 To ensure stability of the solution, the
time step to integrate the TD Kohn-Sham equations is cho-
sen to be quite small (typically of the order of 10−3 fs) and
thus the number of time steps required to obtain a meaning-
ful spectrum becomes prohibitively large for many practical
applications.13 Furthermore, in time domain TDDFT imple-
mentations, one loses any explicit information on individual
excitations, as well as the ability to compute dipole-forbidden
states. Only the spectrum as a whole can be resolved.20

For many of the applications mentioned above, one is
mainly interested in the low energy optical response of the
system, with energies in the region of visible and low energy
ultraviolet light. Additionally, properties of individual exci-
tations such as oscillator strengths and response density dis-
tributions are important for analysing the spectrum and opti-
mising spectral response for specific applications. A method
which lends itself naturally to computing low energy ex-
citations of a system is the linear response formalism,8–10

in which the TDDFT equations are cast into an effec-
tive eigenvalue equation that can be solved for its lowest
eigenvalues.13, 21, 22 This formalism can also be made linear
scaling,23, 24 making it ideal for the large scale nanostructured
systems we have in mind.

In this paper, we present a fully linear-scaling implemen-
tation of TDDFT in the linear response formalism, suitable
for calculating the low energy excitation energies and spec-
trum of large systems. We will first give a brief overview of
both linear-scaling DFT in the ONETEP code19 (Sec. II A) and
linear response TDDFT (Sec. II B), mentioning only features
that are important for our formalism. We will then present
an outline of various aspects of the linear-scaling TDDFT
formalism, making use of a double representation approach
to represent the occupied and unoccupied Kohn-Sham space
(Secs. II C–II F). We will present results on a number of test
systems (Secs. III A–III C), as well as a demonstration of the
linear scaling of the computational effort with system size
(Secs. III D and III E). Our conclusions are summarised in
Sec. IV.

II. METHODOLOGY

A. Linear-scaling density functional theory in ONETEP

All linear-scaling DFT formalisms are developed around
the idea of exploiting nearsightedness:25 This principle states
that for any system with a band gap, the single particle den-
sity matrix decays exponentially with distance.26, 27 A vari-
ety of different linear scaling methods based on this principle
have been developed in recent years and have been reviewed
extensively.16, 17

In ONETEP the density matrix is expressed through a
set of optimisable localised functions {φα} referred to as
nonorthogonal generalised Wannier functions (NGWFs).28

The NGWFs are expanded in an underlying basis of periodic
sinc functions (psincs)29 equivalent to a set of plane waves.
The density matrix is then written in separable form30

ρ(r, r′) =
occ∑
v

ψKS
v (r)ψKS∗

v (r′) = φα(r)P {v}αβφ∗
β(r′), (1)

where we assume an implicit summation over repeated Greek
indices. In Secs. II A–II F, we will use Latin indices to denote
objects in the canonical representation and Greek indices to
denote objects involving the localised set of functions, while
subscripts and superscripts in curly brackets are labels, rather
than free indices. Thus, {P {v}αβ} are the elements of the va-
lence density matrix in the representation of duals of NGWFs.
Locality is imposed through a spatial cutoff on the density ma-
trix and a strict localisation of the NGWFs. The total energy
of the system is minimised both with respect to the density
matrix and the NGWFs. The underlying psinc basis of the
NGWFs allows the method to achieve an accuracy equiva-
lent to plane-wave methods.31 The in situ optimisation of the
NGWFs during the calculation ensures that only a minimal
number of {φα} are needed to span the occupied subspace.

In a ONETEP calculation, there is no reference to indi-
vidual Kohn-Sham eigenstates in their canonical representa-
tion. Eigenstates can be obtained in a post-processing step by
a single diagonalisation of the DFT Hamiltonian in NGWF
representation. Due to the minimal size of the set of NG-
WFs needed to represent the occupied subspace, this diago-
nalisation is generally cheap, but does not scale linearly with
system size. Occupied states are accurately represented by
{φα}, however, unoccupied states are reproduced increasingly
poorly with increasing energy.32 In general, the specific op-
timisation of {φα} in order to represent the occupied space
leads to poor representation of the conduction space manifold.

This shortcoming was addressed recently32 in a method
where a second set of NGWFs {χβ} is optimised in a non-
self-consistent calculation following the determination of the
ground-state. The method uses a Hamiltonian that projects out
the occupied states and minimises the energy with respect to a
second conduction density matrix P{c} and the set of NGWFs
{χβ} in order to represent the low energy subspace of the
conduction manifold. The conduction density matrix is then
expressed using the conduction NGWFs:

ρ{c}(r, r′) =
Nc∑
c

ψKS
c (r)ψKS∗

c (r′) = χα(r)P {c}αβχ∗
β (r′). (2)

Here, we use the subscript c to denote conduction Kohn-Sham
states and Nc to denote the number of Kohn-Sham conduction
states that P{c} is optimised to represent.

The optimisation of both P{c} and {χα} scales linearly
with system size. As in the ground-state calculation, the indi-
vidual Kohn-Sham eigenstates can be calculated from a sin-
gle diagonalisation of the Hamiltonian in conduction NGWF
representation if needed. The obtained conduction states are
shown to be in excellent agreement with traditional plane-
wave DFT implementations.32 Thus the NGWF approach al-
lows the representation of both the occupied space and a
low energy subset of the unoccupied space to plane-wave ac-
curacy using two independently optimised sets of localised
functions. The underlying psinc basis allows for a system-
atic improvement of the NGWFs and the individual optimi-
sations ensure that only a minimal set of {φα} and {χβ} have
to be used in order to represent the valence and conduction
space. In contrast to methods making use of a single set of
localised orbitals, the double NGWF approach also allows for
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keeping a strict localisation on {φα} representing the valence
space, while for {χβ} a larger localisation radius can be cho-
sen. These features make the conduction and valence NGWFs
ideal for the application to the linear response TDDFT for-
malism, provided only low energy excitations are of interest.
The main limitation of the NGWF representation is that the
localised functions {χα} do not form a very natural repre-
sentation of high energy delocalised and unbound conduction
states. This limitation however is generally shared with other
localised basis set methods and we expect the NGWF repre-
sentation to perform no worse for these states than Gaussian
basis sets, with the advantage that the set of {χα} is signifi-
cantly smaller in size.

B. The linear response TDDFT formalism

In recent years, a number of reviews on different aspects
of TDDFT have been published.8–10 In general, one differ-
entiates between two main formalisms: The linear response
formalism, which can be cast into an effective eigenvalue
equation and the time propagation formalism, in which the
time-dependent Kohn-Sham equations are propagated explic-
itly. Linear response TDDFT has become the method of
choice for calculating low energy excitations and spectra and
is now widely used.9, 10 In the linear response regime, the ex-
citation energies can be expressed as the solution to the eigen-
value equation9(

A B

B† A†

)( �X
�Y

)
= ω

(
1 0

0 −1

)( �X
�Y

)
, (3)

where the elements of the block matrices A and B can be ex-
pressed in canonical Kohn-Sham representation as

Acv,c′v′ = δc,c′δv,v′
(
εKS
c − εKS

v

) + Kcv,c′v′ , (4)

Bcv,c′v′ = Kcv,v′c′ . (5)

Here, c and v denote Kohn-Sham conduction and valence
states and K is the coupling matrix with elements given by

Kcv,c′v′ = 2
∫

d3rd3r ′
[

1

|r − r′| + δ2Exc

δρ(r)δρ(r′)

∣∣∣∣
ρ{0}

]

×ψKS∗
c (r)ψKS

v (r)ψKS∗
v′ (r′)ψKS

c′ (r′). (6)

In the above expressions, we have omitted all spin indices for
convenience and are limiting ourselves to the calculation of
singlet states only. Furthermore, the coupling matrix is taken
to be static, a simplification that is known as the adiabatic
approximation. Exc is the exchange-correlation energy and its
second derivative, evaluated at the ground-state density ρ{0}

of the system, is known as the TDDFT exchange-correlation
kernel. As in ground state DFT, its exact functional form is
not known. A commonly made choice is to use Exc = ELDA

xc ,
which is known as the adiabatic local density approximation
(ALDA).

A further simplification to the TDDFT eigenvalue equa-
tion can be achieved by making use of the Tamm-Dancoff
approximation (TDA).33 In this approximation, we assume

the off-diagonal coupling matrix elements Bcv,c′v′ to be small.
The matrix equation then simply reduces to

A�X = ω �X, (7)

a matrix eigenvalue problem of half the size of the original
one. More crucially, the TDDFT eigenvalue equation in the
TDA is Hermitian, while the original equation is not.34 Gen-
erally speaking, the TDA gives good excitation energies but
violates oscillator strength sum rules.9 However, due to its
Hermitian properties, the TDA lends itself to solutions involv-
ing standard matrix eigenvalue solvers and will therefore be
considered for the rest of this work.

In principle, the matrix A can be built explicitly and
Eq. (7) can be diagonalised to give all excitation energies of
the system. Clearly, this is not possible with linear scaling ef-
fort, as the dimensions of A grow as O(N2) with system size
and the matrix is not sparse in the canonical representation.
Since every matrix element involves a double integral over
product Kohn-Sham states, constructing A scales as O(N6).
However, in the limit of large systems when one is only in-
terested in a comparatively small number of eigenvalues, it is
much more advantageous to use iterative methods instead of
direct diagonalisation to calculate the eigenvalues of A. In or-
der to do so one needs to define the action of A on an arbitrary
trial vector x. Following the formalism introduced by Hutter21

we define

ρ{1}(r) =
∑
c,v

ψc(r)xcvψ
∗
v (r), (8)

where ρ{1}(r) is the first order response density associated
with the trial vector x. Defining the self-consistent field po-
tential V

{1}
SCF(r) as a reaction to the response density as

V
{1}

SCF(r) = 2
∫

d3r ′ ρ
{1}(r′)

|r − r′|

+ 2
∫

d3r ′ δ2Exc

δρ(r)δρ(r′)

∣∣∣∣
ρ{0}

ρ{1}(r′), (9)

the action q of the TDDFT operator A on the arbitrary trial
vector x can be simply written as

qcv =
∑
c′v′

Acv,c′v′xc′v′

= εKS
c xcv − xcvε

KS
v +

(
V

{1}
SCF

)
cv

. (10)

Here, (V {1}
SCF)cv is given by(

V
{1}

SCF

)
cv

=
∫

d3r ψ∗
c (r)V {1}

SCF(r)ψv(r). (11)

One can then express the lowest excitation energy ωmin of a
system in terms of qcv

ωmin = min
x

{ ∑
cv xcvqcv∑

c′v′ xc′v′xc′v′

}
, (12)

which can be minimised variationally with respect to x.
The formulation of the lowest TDDFT eigenvalue in

terms of a variational principle as outlined in Eq. (12) is only
valid in the Tamm-Dancoff approximation, as it requires the
TDDFT eigenvalue matrix to be Hermitian. However, the full
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non-Hermitian TDDFT eigenvalue matrix consists of blocks
of Hermitian matrices and exploiting this structure, a more
generalised version of the variational principle of Eq. (12)
can be formulated.36 While it is beyond the scope of this pa-
per, we point out that the linear-scaling TDDFT method de-
veloped in Secs. II C–II F can be readily extended to the full
TDDFT eigenvalue equation by making use of the generalised
version of the variational principle. Although the approach
above is outlined in the canonical representation, it can be re-
formulated in terms of local orbitals or other basis functions.
In many quantum chemistry codes, V{1}

SCF is constructed in a
Gaussian basis set representation, making use of highly opti-
mised methods to perform four centre Gaussian integrals.22, 35

Plane wave implementations typically make use of a mixed
representation of canonical orbitals for the occupied states
and plane waves for the virtual states.13, 21 The main advan-
tage of all these iterative methods is that no explicit construc-
tion, storage, and diagonalisation of A is required, which is
prohibitive for large system sizes. However, the different ba-
sis set implementations mentioned above still make reference
to individual Kohn-Sham states, thus calculating q still shows
an asymptotic scaling of O(N3) with system size. To improve
the scaling, one has to avoid any reference to the canonical
representation.23

C. Linear-scaling linear response TDDFT

ONETEP provides a set of optimised NGWFs {χα} span-
ning the low energy conduction space and {φβ} spanning the
valence space. Together, they form a suitable representation
to expand quantities such as ρ{1} and V

{1}
SCF. In Secs. II C

and II D, for all expressions including the sets of localised
NGWFs, we will differentiate between covariant and con-
travariant quantities by using lower and upper case Greek
indices, respectively. For quantities involving the canonical
Kohn-Sham states, this differentiation is unnecessary since
the Kohn-Sham orbitals form an orthogonal basis. For a more
in depth treatment of tensors in electronic structure theory, see
Refs. 37 and 38. The Kohn-Sham orbitals are used in this sec-
tion to derive the appropriate expressions in NGWF represen-
tation, as well as to highlight the equivalence to the canonical
representation. Note however, that there is no explicit refer-
ence to the canonical representation in the final expressions.

Starting with the response density, we can write

ρ{1}(r) =
∑
c,v

〈
r
∣∣ψKS

c

〉
xcv

〈
ψKS

v

∣∣ r
〉

=
occ∑
v

opt∑
c

〈r|χα〉 〈
χα

∣∣ψKS
c

〉
xcv

〈
ψKS

v

∣∣φβ
〉 〈φβ |r〉. (13)

Here, the sum of the conduction states goes over all the states
for which {χα} was optimised. We have again assumed an
implicit summation over repeated Greek indices. In principle,
one has to sum over an infinite number of conduction states.
However, for the lowest few optical energies in the system,
ρ{1} is well described by a relatively small number of unoc-
cupied states. This approximation can be rigorously tested by
including a larger subset of the conduction space manifold in

the optimisation of the conduction density matrix P{c}. In the
spirit of the linear scaling DFT formalism the above expres-
sion can be rewritten as

ρ{1}(r) = χα(r)P {1}αβφβ(r), (14)

where the effective response density matrix P{1}αβ is defined
as

P {1}αβ =
occ∑
v

opt∑
c

〈
χα

∣∣ψKS
c

〉
xcv

〈
ψKS

v

∣∣φβ
〉
. (15)

The above definition is analogous to the definitions of the va-
lence and conduction density matrices in NGWF representa-
tions, where

(P {c})αβ =
opt∑
c

〈
χα

∣∣ψKS
c

〉〈
ψKS

c

∣∣χβ
〉
, (16)

(P {v})αβ =
occ∑
v

〈
φα

∣∣ψKS
v

〉〈
ψKS

v

∣∣φβ
〉
. (17)

Equation (15) defines the full response density matrix
in mixed conduction-valence NGWF representation. Each
TDDFT excitation energy can be written as a functional
of a specific response matrix and thus P{1} plays the same
role in the linear-scaling linear response formulation as the
eigenvector x does in the canonical formulation outlined in
Sec. II B.

Similar to the response density, (V {1}
SCF)cv can be rewritten

as (
V

{1}
SCF

)
cv

= 〈
ψKS

c

∣∣χα
〉〈
χα

∣∣V̂ {1}
SCF

∣∣φβ

〉〈
φβ

∣∣ψKS
v

〉
. (18)

Furthermore, the diagonal part of qcv consisting of Kohn-
Sham conduction-valence eigenvalue differences becomes

εKS
c xcv − xcvε

KS
v =

opt∑
c′

〈
ψKS

c

∣∣χα
〉〈χα|Ĥ |χβ〉〈χβ

∣∣ψKS
c′

〉
xc′v

−
occ∑
v′

xcv′
〈
ψKS

v′
∣∣φα

〉〈φα|Ĥ |φβ〉〈φβ
∣∣ψKS

v

〉
.

(19)

It is now convenient to introduce a shorthand notation for the
matrix elements of different quantities in terms of the differ-
ent types of NGWFs. We denote the Kohn-Sham Hamilto-
nian in conduction and valence NGWF representations as Hχ

and Hφ , respectively, and the self-consistent field response in
mixed conduction-valence NGWF representation as V{1}χφ

SCF :

(Hχ )αβ = 〈χα|Ĥ |χβ〉, (20)

(Hφ)αβ = 〈φα|Ĥ |φβ〉, (21)

(
V

{1}χφ

SCF

)
αβ

= 〈χα|V̂ {1}
SCF|φβ〉. (22)

By inserting Eqs. (18) and (19) into Eq. (10), multiplying
with 〈χα|ψKS

c 〉 and 〈ψKS
v |φβ〉 from the left and right, respec-

tively, and summing over the c and v indices, one can remove
all references to the canonical representation from q. Using
the definition of the response density matrix P{1}, the result of
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the TDDFT operator acting on a trial response matrix P{1} in
NGWF representation reduces to the simple form

(qχφ)αβ = (P {c}HχP {1} − P {1}HφP {v})αβ

+ (
P {c}V {1}χφ

SCF P {v})αβ
. (23)

Note that in the linear-scaling formalism employed in
ONETEP, Hχ , Hφ , P{c}, P{v}, and V{1}χφ

SCF are all sparse ma-
trices for sufficiently large system sizes.39 Furthermore, the
response potential V

{1}
SCF(r) is a functional of the response

density only. Constructing ρ{1} from Eq. (14) only requires
information from density matrix elements P{1}αβ for which
〈χα|φβ〉 �= 0 and therefore scales linearly with system size
even for fully dense P{1}. Evaluating V

{1}
SCF(r) from Eq. (9) also

scales linearly for any semi-local exchange-correlation func-
tional. Thus constructing V{1}χφ

SCF scales linearly with system
size for fully dense P{1}. However, in evaluating the matrix
operations in Eq. (23), linear scaling can only be achieved if
the response density matrix is truncated, just like the density
matrix in linear-scaling DFT. If this truncation can be per-
formed, the response density matrix becomes sparse for suffi-
ciently large systems and evaluating the action of the TDDFT
operator on an arbitrary response matrix P{1} scales linearly
with system size.

Using the action of the TDDFT operator in NGWF repre-
sentation defined in Eq. (23), one can then rewrite the lowest
excitation energy of the system as

ωmin = min
P{1}

{
Tr

[
P{1}†SχqχφSφ

]
Tr

[
P{1}†SχP{1}Sφ

]
}

. (24)

Here, Sχ and Sφ denote the conduction and valence NGWF
overlap matrices given by (Sχ )αβ = 〈χα|χβ〉 and (Sφ)αβ

= 〈φα|φβ〉. Using the definitions of the involved quantities,
as well as the invariance of the trace operation under cyclic
permutation, it is trivial to show that Eq. (24) is equivalent to
Eq. (12) in the canonical representation. Once the minimum
excitation energy has been calculated through the variational
principle of Eq. (24), its related oscillator strength (in atomic
units) can be calculated as

fω = 2ω

3

∣∣P {1}αβ〈φβ |r|χα〉∣∣2
. (25)

While in the above discussion on the linear scalability
of calculating qχφ we have assumed semi-local exchange-
correlation kernels, the formalism is equally valid for hybrid
functionals. For hybrid functionals, one can split V{1}

SCF into
V{1}loc

SCF containing the local part of the functional and V{1}HF
SCF

containing the fraction of exact exchange. V{1}loc
SCF can be eval-

uated trivially in linear-scaling effort, while the expression for
V{1}HF

SCF reduces to(
V

{1}HF
SCF

)αγ = −2cHFP
{1}βδ

×
∫ ∫

χα(r)φγ (r′)χβ(r)φδ(r′)
|r − r′| d3rd3r ′, (26)

where cHF denotes the fraction of Hartree-Fock exchange.
We note that Eq. (26) is closely related to a term that needs
to be evaluated in ground state DFT using hybrid function-
als, where it can be calculated in linear-scaling effort.40 Thus

the evaluation of the action qχφ can be made to scale lin-
early with system size even for hybrid exchange-correlation
kernels.

D. The algorithm

In order to calculate the Nω lowest excitation energies of
a system with response density matrices {P{1}

i ; i = 1, ...Nω}
and corresponding {qχφ

i ; i = 1, ...Nω}, we define the function

� =
Nω∑
i

ωi =
Nω∑
i

[
Tr

[
P{1}†

i Sχqχφ

i Sφ
]

Tr
[
P{1}†

i SχP{1}
i Sφ

]
]

, (27)

which can be minimised with respect to {P{1}
i } under the

constraint

Tr
[
P{1}†

i SχP{1}
j Sφ

] = δij . (28)

Again using the expression for {P{1}
i } and the invariance of the

trace under cyclic permutations, it is clear that the above con-
straint is equivalent to the requirement that eigenvectors of the
canonical TDDFT eigenvalue problem (Eq. (7)) are orthonor-
mal to each other. When � is minimised, {P{1}

i } span the same
subspace as the Nω lowest eigenvectors of the TDDFT oper-
ator A. In this work, the minimisation of � is achieved using
a conjugate gradient algorithm with Gram-Schmidt orthonor-
malisation.

Differentiating � with respect to P{1}
i one can find the

(covariant) gradient orthogonal to all current (contravariant)
trial response matrices {P{1}

j }41

(
g⊥

i

)
αβ

= (Sχ )αγ

(
q

χφ

i

)γ δ
(Sφ)δβ

−
∑

j

Tr
[
P{1}†

j Sχyχφ

i Sφ
]
(Sχ )αγ (P {1}

j )γ δ(Sφ)δβ .

(29)

Operating on the left and right with the inverse conduction
and valence overlap matrices, the covariant gradient can be
transformed into a contravariant gradient(

g⊥
i

)αβ = (
q

χφ

i

)αβ

−
∑

j

Tr
[
P{1}†

j Sχqχφ

i Sφ
](

P
{1}
j

)αβ
, (30)

which can be used as a steepest descent search direction for a
conjugate gradient algorithm.

The exact form of the conjugate gradient algorithm used
here has been outlined in Ref. 41 (with the difference that we
do not make use of any preconditioner). Here we just focus
on how to choose a suitable starting guess for {P{1}

i }. Since we
do not have individual Kohn-Sham states available in the lin-
ear scaling formalism of the ground state calculation, we can-
not initialise P{1}

i to conduction-valence product Kohn-Sham
states close to the band gap, which would otherwise form rea-
sonable starting guesses. Instead we initialise the set of {P{1}

i }
to random starting configurations (for other possible initiali-
sation schemes, see Ref. 23). However, from Eq. (15) it can be
seen that any valid response density matrix must be invariant
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under the operation

P{1}′ = P{c}SχP{1}SφP{v} = P{1}. (31)

This operation can be understood as a projection into con-
duction and valence Kohn-Sham states in their NGWF rep-
resentation. Response density matrices that violate invariance
under this projection contain elements that would correspond
to forbidden transitions between two occupied or two unoc-
cupied states, or contain contributions from unoptimised and
thus badly represented high energy conduction states. The in-
variance requirement follows from an expansion of the den-
sity matrix idempotency constraint to first order for a given
perturbation42 and must thus be fulfilled for all first order
response density matrices. The need to enforce the idempo-
tency constraint explicitly via the projection of Eq. (31) can
be viewed as the price to be paid for moving away from a
formulation involving the canonical representation.

The invariance requirement can be enforced by project-
ing the starting guess response matrices with P{c}Sχ and
SφP{v} from the left and the right, respectively. From Eq. (23)
it can be seen that qχφ , the result of the TDDFT operator
acting on a valid trial response density matrix, automatically
shows the same invariance property as P{1}. Therefore, all gra-
dients {g⊥

i } constructed using a valid set of {P{1}
i } obey the in-

variance requirement by construction. Thus, every conjugate
gradient derived from {g⊥

i } will have the specified invariance
property and updating a valid response matrix with a gradient
will preserve the invariance of that matrix under the projection
(Eq. (31)).

The orthogonality condition of Eq. (28) is enforced us-
ing a Gram-Schmidt procedure, which has a nominal scal-
ing of O(N2

ωNNGWF
c NNGWF

v ), with NNGWF
c and NNGWF

v being
the number of conduction and valence NGWFs, respectively.
Both NNGWF

c and NNGWF
v grow as O(N) with system size, giv-

ing an overall scaling of O(N2) with system size for the or-
thonormalisation procedure. However, if P{1} is truncated and
thus sparse, the scaling of the Gram-Schmidt orthonormalisa-
tion reduces to O(N), with a prefactor dependent on the square
of the number of excitation energies Nω.

Thus, the whole algorithm outlined above scales linearly
in memory with the number of excitation energies Nω to
solve for. Since the Nω individual response density matri-
ces {P{1}

i } have to be kept orthogonal to each other using a
Gram-Schmidt procedure, the asymptotic scaling of compu-
tational cost with the number of excitation energies is O(N2

ω).
However, for a fixed number of states required, the algorithm
scales as O(N) with system size in both memory requirements
and computational cost.

E. Truncation of the response density matrix

Since the algorithm developed in Secs. II C and II D only
exhibits true linear-scaling properties if all involved density
matrices P{v}, P{c}, and P{1} can be truncated, one has to jus-
tify that the truncations are indeed possible. The truncation of
P{v} originates from the nearsightedness principle25 and forms
the basis of any linear-scaling DFT implementation. In insu-
lating systems, P{v} can be shown to decay exponentially with
distance.43 For the conduction states, P{c} is only expected to

exhibit an exponential decay if there is a second energy gap in
the conduction band and P{c} spans the manifold of conduc-
tion states between the two bandgaps. In this case, the same
argument to show exponential decay of the ground-state den-
sity matrix can be applied to P{c}.43 Furthermore, by the same
argument, the joint density matrix spanning the manifold de-
fined by both P{v} and P{c} must be exponentially localised.
The joint density matrix can be written as a block diagonal
matrix with P{v} and P{c} as its diagonal entries. Any response
density matrix P{1} due to the application of a small pertur-
bation described in this work corresponds to the off-diagonal
blocks of said joint density matrix. However, the application
of a small perturbation cannot break the disentanglement of
the joint manifold of P{v} and P{c} from the rest of the conduc-
tion manifold and thus cannot break the exponential localisa-
tion of the joint block density matrix. The joint block density
matrix can only be exponentially localised if all its constituent
blocks are exponentially localised. We thus conclude that, in
the special case described here, the TDDFT response density
matrix P{1} is indeed expected to be exponentially localised.

The desired property of exponential localisation of the
conduction density matrix and thus of the response density
matrix can most likely be realised in 1D systems and molec-
ular crystals, where the bands show little dispersion. How-
ever, it is evident from the above considerations that one can-
not present a generalised argument that P{1} can be truncated
for all systems. This limitation is not unique to the linear re-
sponse formulation of TDDFT presented here, but applies to
linear-scaling time domain TDDFT as well, where the time-
dependent response density matrix is truncated without a gen-
eral formal justification. It was however noted by Yam et al.20

and Chen et al.44 that for a number of systems studied the first
order response density matrix retained the localisation of the
ground-state density matrix to a good degree and thus could
be truncated. In general, we expect this finding to be true for
the relatively localised excited states of a variety of systems.
Whether a truncation of P{1} can be achieved for very delo-
calised high-energy excitations is doubtful. However, since
the method presented here is mainly aimed at low energy exci-
tations of large systems, we expect that the truncation of both
P{c} and P{1} can indeed be carried out in practice for a certain
class of systems and a linear scaling of computation time with
system size can be achieved.

Truncation of P{1} adds an additional complication to the
algorithm in that the invariance relation of Eq. (31) only holds
approximately. Thus the gradient g⊥ derived from a truncated
P{1} only approximately preserves the invariance property and
the accumulation of errors can lead to instabilities in the con-
vergence. To measure the variations of P{1} from valid re-
sponse matrices obeying the projection operation of Eq. (31),
we define the positive-semidefinite norm Q[P{1}]:

Q[P{1}] = Tr[(P{1}†SχP{1}Sφ − P{1}′†SχP{1}′Sφ)2], (32)

where P{1}′ is constructed by applying the projections P{c}Sχ

and SφP{v} to P{1} from the left and right, respectively, en-
forcing that the resulting matrix P{1}′ has the same sparsity
pattern as P{1}. For fully dense matrices P{1} initialised in the
way described in Sec. II D, Q[P{1}] vanishes to numerical ac-
curacy. For truncated response density matrices, Q[P{1}] can
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be forced to remain smaller than some threshold by iteratively
applying the projection of Eq. (31) to P{1} after each TDDFT
iteration, thus stabilising the algorithm.

F. Representation of the unoccupied subspace

The purpose of the algorithm described in this work is
to enable the calculation of excitations that mainly consist of
Kohn-Sham transitions into well-bound unoccupied states and
are well described by {χα} and P{c}. However, even low en-
ergy excitations largely made up of well bound Kohn-Sham
transitions often have significant contributions from high en-
ergy conduction states and including these unoccupied states
in the calculation becomes important to achieve convergence.
While in principle it is always possible to optimise {χα} for
a larger number of unoccupied states, it is in practice not
desirable to attempt to achieve a precise description of very
delocalised, unbound states within a framework of localised
orbitals. Optimising {χα} for high energy conduction states
generally comes at the cost of an increased NGWF localisa-
tion radius, which leads to a decrease of computational ef-
ficiency. A more efficient approach is to optimise {χα} for
the subset of bound, low energy conduction states that form
the most important contributions to the low energy excita-
tions and to include the unbound continuum states in an ap-
proximate fashion. In order to do so, we redefine the conduc-
tion density matrix as a projector onto the entire unoccupied
subspace:

P{c} = ((Sχ )−1 − (Sχ )−1SχφP{v}(Sχφ)†(Sχ )−1). (33)

Here, (Sχφ)αβ = 〈χα|φβ〉, the cross-overlap matrix between
the two sets of NGWFs, and {χα} is specifically optimised
for a low energy, well-bound subspace of the unoccupied
space. We notice that under the above redefinition, P{c} is only
strictly idempotent if {χα} is complete, a condition that is
never realised in practice. Thus initialising P{1} in the manner
described in Sec. II D no longer guarantees for the invariance
relation in Eq. (31) to be met, even if no density matrix trunca-
tion is applied. To stabilise the convergence of the algorithm,
the invariance projection in Eq. (31) has to be applied itera-
tively to P{1} after each TDDFT conjugate gradient iteration
in order to keep Q[P{1}] below a certain threshold.

III. RESULTS AND DISCUSSION

In this section, we will assess the performance of the
method outlined above, as implemented in the ONETEP code.
In Sec. III A we perform a detailed comparison of our method
with well established conventional TDDFT codes, demon-
strating the accuracy of the approach introduced here. In
Sec. III B we demonstrate the scaling of the method with re-
spect to the number of excitations converged, while Sec. III C
contains a comparison with experimental data. In Sec. III D
we show the behaviour of the method under the truncation of
the response density matrix. Finally, in Sec. III E we demon-
strate that the method does scale fully linearly with system
size.

Unless specified otherwise, all calculations are carried
out using the LDA exchange correlation functional for the

ground-state DFT calculations and ALDA for the TDDFT
calculations, both in the Perdew-Zunger parameterisation.45

Norm conserving pseudopotentials46 are used throughout this
work. Unless specified otherwise, the localisation region for
conduction and valence NGWFs were chosen by converging
the conduction energy and ground state energy with respect to
the conduction and valence NGWF radii.

A. Pentacene

As the first test system we chose pentacene (C22H14),
as its moderate size allows for detailed comparisons to tra-
ditional TDDFT methods. The simulation box was chosen
to be 40 × 49 × 30 a3

0 and the kinetic energy cutoff was
750 eV. The atomic positions were optimised at the LDA
level.47 In order to assess the accuracy of the TDDFT method
we first performed a calculation in which the unoccupied sub-
space was limited to only contain states for which {χα} was
specifically optimised. For this calculation, a minimal set of
1 NGWF per H and 4 NGWFs per C atom was chosen for
both the occupied and the unoccupied state representations.
The NGWF radius for both valence NGWF species was cho-
sen to be 10.0 a0, while 15.0 a0 was chosen for the conduc-
tion NGWFs. The conduction density matrix was optimised
for the 10 lowest unoccupied states, covering all of the bound
unoccupied states. This put the dimensions of the TDDFT op-
erator at 510 × 510 in a canonical representation and 10404
× 10404 in a representation of conduction and valence NG-
WFs. The results obtained were compared to a calculation
performed using the Octopus code48 (modified to allow for
calculations within the Tamm-Dancoff approximation). For
the Octopus calculation, a grid spacing of 0.25 a0, equivalent
to the ONETEP grid, was used, while the basis was defined on
this grid as the union of atom centered spheres with a radius of
19.0 a0. The calculation was performed using the Casida cal-
culation mode within the Tamm-Dancoff approximation and
the number of unoccupied states was limited to 10 in order
to ensure a very high level of convergence for these states.
For the 10 lowest excited states, we found a good agreement
between the two methods, with a root mean squared (RMS)
difference of 30 meV in excitation energies and an identical
ordering of states. Thus, the iterative solution to the TDDFT
equation in ONETEP gives results that are comparable to the
explicit construction and diagonalisation of the eigenvalue
equation in Octopus if the unoccupied subspace is truncated
to the same size.

While the two methods agree well for a conduction space
truncated to contain the 10 lowest, well bound states, the
TDDFT eigenvalue energies need to be converged with re-
spect to the size of the conduction space. Here, we make
use of the projector onto the unoccupied subspace defined in
Sec. II F for the ONETEP calculations. In order to assess the
convergence with the size of our representation, we form three
different choices of NGWF representation for {χα}: A mini-
mal set containing 1 NGWF per H and 4 per C and two sets
where we augmented the H atoms to have 2 and 5 NGWFs,
respectively. The reason for doing so is that the minimal repre-
sentation of NGWFs already gives a very good description of
the bound unoccupied states, while the additional functions on
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TABLE I. Results for the excited states of pentacene, as calculated using
ONETEP with the projection onto the entire unoccupied subspace, in com-
parison with results generated by NWChem. Results are shown for the 10
lowest excitations, as well as two selected higher energy states, one dark and
one bright (labelled (d) and (b), respectively). The first three columns corre-
spond to ONETEP calculations using three different NGWF representations,
where A denotes the minimal set of NGWFs for the conduction space, B uses
2 NGWFs per H, and C uses 5 NGWFs per H. The NWChem calculations are
performed using an aug-cc-pVTZ basis. Energies are given in eV, oscillator
strengths in brackets.

ONETEP (A) ONETEP (B) ONETEP (C) NWChem

1 1.883 (0.050) 1.855 (0.049) 1.839 (0.050) 1.844 (0.044)
2 2.416 2.402 2.405 2.408
3 2.961 2.942 2.945 2.961
4 3.143 3.121 3.103 3.115
5 3.419 3.405 3.409 3.412
6 3.852(0.034) 3.831(0.035) 3.821(0.035) 3.839(0.030)
7 3.918 3.900 3.903 3.908
8 4.003 4.000 3.996 4.002
9 4.029 (0.011) 4.032 (0.013) 4.006(0.013) 4.029(0.012)
10 4.162 4.106 4.101 4.159
...

...
...

...
...

(d) 4.251 4.216 4.211 4.246
(b) 4.311(2.58) 4.281(3.87) 4.239(3.92) 4.270(3.88)

H lead to a better description of the very delocalised unbound
states. For the minimal representation, the NGWFs were opti-
mised for the 10 bound states, while the increased variational
freedom in the two larger sets meant we could explicitly opti-
mise 4 more lightly bound conduction states as well, leading
to a total number of 14 optimised conduction states.

Table I summarises the results of the ONETEP calcu-
lations using the projector method with the three different
NGWF representations, as well as a benchmark calcula-
tion performed in the quantum chemistry software package
NWChem.49 The NWChem calculations were performed us-
ing an aug-cc-pVTZ Gaussian basis set, corresponding to 46
basis functions per C atom and 23 basis functions per H
atom. This put the size of the active unoccupied space in the
NWChem calculations at 1196 conduction states.

Comparing the ONETEP results to the reference calcula-
tion, we find that the minimal NGWF set using the projector
method produces results that show a RMS difference of just
16 meV for the first 10 states compared to the NWChem re-
sults. It does however predict a significantly lower oscillator
strength for the bright state. The NGWF set containing 2 lo-
calised functions per H atom gives results within 0.02 eV of
the NWChem results and a very good agreement on oscilla-
tor strengths throughout. Comparisons to the largest NGWF
set used show that the lowest 10 states are essentially con-
verged in both energy and oscillator strength for the medium
set, while the bright state is predicted to be 0.03 eV lower
than the NWChem benchmark result for the largest ONETEP
representation.

We thus note that in order to achieve results that are com-
parable to Gaussian basis set calculations using a relatively
large aug-cc-pVTZ basis, it is enough to use a {χα} contain-
ing just 2 NGWFs per H and 4 per C. We also note that some
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FIG. 1. Convergence of selected excited states of pentacene with the conduc-
tion NGWF localisation radius. Calculations are carried out using 2 NGWFs
per H and 4 per C and the NGWFs are specifically optimised to represent the
14 lowest conduction states. The squares, triangles, and circles correspond to
excited states labelled 6, 9, and (d), respectively, in Table I.

low energy states, namely, the lowest and fourth lowest excita-
tion, drop significantly in energy when introducing the whole
unoccupied subspace into the calculation by means of a pro-
jector (up to 0.16 eV for the fourth state). While a decompo-
sition of P{1} into Kohn-Sham transitions shows that no single
transition into the unbound and unoptimised conduction states
makes up more than 0.1% of the total TDDFT response den-
sity matrix, their collective effect is to significantly lower the
energy of certain states. However, the approximate descrip-
tion of these states via a projector onto the unoccupied sub-
space leads to very good results, even if only a very small
number of NGWFs are used.

The benchmark tests show that our results are well
converged with basis set size and the representation of the
unoccupied subspace. However, the nature of the localisation
constraint on the NGWFs means that we need to assess the
convergence of the method with respect to the conduction
NGWF radius as well. Figure 1 shows the convergence of
three selected excited states with respect to the conduction
NGWF radius for the medium sized basis set corresponding
to 2 NGWFs per H atom. The NGWFs were optimised for 14
conduction states and the projector onto the unoccupied sub-
space was used. We note that the excitations corresponding
to the 6th and 9th lowest states in Table I are well converged
even for relatively small NGWF radii. However, in order to
converge the excited state labelled as (d) in Table I, one needs
to go to much larger NGWF radii. A breakdown of the cor-
responding response density matrices into Kohn-Sham transi-
tions shows that the excited state labelled (d) is to 99% com-
posed of a transition from the HOMO into the 9th unoccupied
Kohn-Sham state. This unoccupied state is very lightly bound
and delocalised and thus naturally shows an increased sensi-
tivity to the localisation constraint imposed on the conduction
NGWFs. However, even this very sensitive excitation is well
converged for a NGWF radius of 15 a0.
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B. Buckminsterfullerene

As a second test system, we use buckminsterfullerene
(C60) which has already been studied extensively both ex-
perimentally and using ab initio simulation techniques. Here,
we focus on how the iterative solution of the TDDFT eigen-
value equations scales with the number of excitations con-
verged. Calculations were performed in a simulation cell
of 37.8 × 37.8 × 37.8 a3

0 , using a kinetic energy cutoff of
800 eV. A minimal number of 4 NGWFs were chosen for both
conduction and valence representations, while the NGWF ra-
dius was chosen to be 13.0 a0 and 8.0 a0, respectively. The
conduction NGWFs were explicitly optimised for a total of
30 states, while the rest of the conduction space is included
into the calculation via the projector onto the unoccupied
subspace.

C60 shows a high number of dark transitions in the low
energy range, transitions for which the oscillator strength is
very small. Thus to reproduce the main features of the spec-
trum up to an energy of 4.8 eV, 150 excitations had to be con-
verged. The spectrum for fullerene is shown in Fig. 2. The
most prominent features of the spectrum are the strong ex-
citation peaks at 3.46 eV and 4.42 eV, which are in good
agreement to the TDDFT energies and oscillator strengths ob-
tained in Ref. 51 using a gradient-corrected functional and a
6-31G+s Gaussian basis set. While the results obtained by
ONETEP predict slightly lower energies for the main two
peaks compared to Ref. 51, we note that the Gaussian basis
set used in those calculations is relatively small, such that the
authors estimate the errors introduced for the main excitations
as being of the order of up to 0.1 eV. Finally, the energies
for the main peaks in the spectrum as calculated in ONETEP
are also in perfect agreement with the 3.5 eV and 4.4 eV ob-
tained in time-propagation TDDFT calculations using a ba-
sis of linear combinations of atomic orbitals by Tsolakidis
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FIG. 2. Absorbtion spectrum of C60 generated from the 150 lowest excita-
tion energies. An artificial smearing width of 0.03 eV was used in generating
this plot. The positions and oscillator strengths of three major excitations
were taken from Ref. 51 and are plotted here using the same artificial Gaus-
sian smearing to produce a reference spectrum. The two spectra were scaled
according to their relative oscillator strengths.
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FIG. 3. Computation time vs. number of excitation energies converged for
C60. The red line is a parabolic fit to the total calculation time while the
blue line is a linear fit to the total time taken to apply the TDDFT oper-
ator on the set of trial vectors. The nonlinear behaviour of the total cal-
culation time due to the orthogonalisation of multiple excitations is clearly
visible.

et al.50 Experimentally, the peaks are reported to be at 3.78 eV
and 4.84 eV,51 in reasonable agreement with the TDDFT
results.

The main purpose of the C60 benchmark test is to demon-
strate the scaling of computational cost of the TDDFT calcu-
lation with the number of converged excitation energies Nω.
Figure 3 shows the total calculation time versus the number of
converged excitation energies as well as the total time taken
in applying the TDDFT operator on the trial vector (Eq. (23)).
The cost of applying the TDDFT operator scales linearly with
the number of excitation energies, as one would expect. How-
ever, it can be seen that for larger numbers of excitations,
the O(N2

ω) scaling of the Gram-Schmidt orthonormalisation
begins to dominate over the application of the TDDFT op-
erator and the total calculation time deviates from the linear
trend.

C. Chlorophyll

In many ways, chlorophyll a (C55H72MgN4O5) provides
an ideal application for the method outlined in this work. Al-
though it is too small to fully exploit all advantages of lin-
ear scaling with system size in both the DFT and TDDFT
calculation, its size represents the upper limit of systems
that can be comfortably studied using plane wave TDDFT
implementations.13 Due to its importance in photosynthesis,
chlorophyll has been studied in great detail both experimen-
tally and in theoretical work using TDDFT.

Calculations on chlorophyll were performed using a ki-
netic energy cutoff of 800 eV. A minimal number of 4 NG-
WFs per N, H, C, O, and Mg atom and 1 NGWF per H atom
were chosen for the set of valence NGWFs, while for the
conduction NGWFs, 13 and 5 were chosen per atom, respec-
tively. For the valence NGWFs, a radius of 8.0 a0 was cho-
sen throughout, while for the conduction NGWFs, a radius of
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FIG. 4. Absorbtion spectrum of chlorophyll a generated from the 12 lowest
excitation energies compared with the experimental spectrum of chlorophyll
a in diethyl ether.52 An artificial smearing width of 0.03 eV was used in pro-
ducing the ONETEP TDDFT results.

12.0 a0 was chosen. The 15 lowest unoccupied states were ex-
plicitly optimised and the projector unto the unoccupied sub-
space was used in order to approximately represent the high
energy conduction states. The resulting spectrum produced
by the 12 lowest excitation energies in comparison to the
experimental spectrum of chlorophyll in diethyl ether52 can
be found in Fig. 4. We predict the first bright peak of the
spectrum at 2.06 eV, while the second bright peak is found to
be at 2.80 eV. We compare the results obtained in ONETEP
with those obtained by Sundholm53 using an ALDA func-
tional and a SV(P) Gaussian basis set. We note that this
Gaussian basis calculation predicts the two main peaks of
the spectrum to be lower by 50 meV. However, the Sund-
holm calculations are carried out using the whole TDDFT
eigenvalue equations while our calculations are based on the
Tamm-Dancoff approximation, so a discrepancy between the
two sets of results of the order of less than 0.1 eV is to
be expected. With reference to the experimental results, the
ONETEP TDDFT calculations show a blueshift of the first
peak, while the second peak at 2.80 eV is slightly redshifted
compared to the experimental spectrum. A similar result can
be seen in the spectrum produced by Rocca et al.13 using the
Perdew-Burke-Ernzerhof (PBE)56 exchange correlation func-
tional and a plane-wave basis set, its overall shape being
in very good agreement with TDDFT calculations presented
here.

The main point that can be taken from the TDDFT cal-
culation presented here is that almost the whole visible spec-
trum of chlorophyll a, from 1.8 to 3.0 eV, can be generated by
just calculating the first 12 excited states of the TDDFT su-
peroperator. Since the number of states required is very small
compared to the dimensions of the TDDFT operator, iterative
methods based on linear response theory are much more ef-
ficient than calculations based on the time propagation of the
time dependent Kohn-Sham equations. Thus, systems such as
chlorophyll a, where the low energy spectrum is completely
dominated by a few very strong excitations and there is only

a very small number of dark, dipole forbidden states, pro-
vide a perfect application for the method discussed in this
work.

D. GaAs nanorods

The accuracy of the method with truncated density matri-
ces is tested on a GaAs nanorod. A number of these nanorods
with different terminations have already been studied in some
detail.54, 55 For our purposes here, we choose a nanorod with
hydrogen termination, consisting of a total of 996 atoms and
having a length of 159 a0. The calculations were performed at
a kinetic energy cutoff of 400 eV and a minimal number of
4 NGWFs per Ga and As atom and 1 NGWF per hydrogen
atom was chosen for both sets of NGWFs. A NGWF locali-
sation radius of 12 a0 was chosen for all NGWFs. Since the
purpose of the calculations on the nanocrystal was to establish
the magnitude of errors introduced by the response density
matrix only, we performed all calculations with fully dense
conduction and valence density matrices and only truncated
P{1} to different degrees.

The nanorods studied here exhibit a large dipole moment
and thus a strong electrostatic potential along their long axes,
causing the HOMO and LUMO to be strongly localised to
opposite ends of the rod. Thus for any semi-local approxi-
mation to the exchange-correlation kernel, one would expect
the lowest excitation energy of the system to correspond to
a charge transfer state across the rod. When calculating the
lowest eigenvalue for the system using a fully dense response
density matrix, this charge transfer state is exactly what we
obtain. However, once a density matrix cutoff is introduced,
the TDDFT algorithm converges to an excited state fully lo-
calised on the As terminated end of the rod and considerably
higher in energy (see Fig. 5).

In Fig. 6, the energy convergence of the localised ex-
cited state is plotted with respect to the density matrix trun-
cation used. We find that although a density matrix cutoff
does not allow us to converge charge-transfer type excita-
tions, the more localised excitation on the As terminated end
of the rod is determined to a high degree of accuracy. A
density matrix truncation radius of 40 a0 introduces an er-
ror of less than 5 meV compared to the excitation calculated
with the full density matrix, suggesting that calculating lo-
calised excitations with a truncated density matrix is indeed
possible.

The fact that the charge transfer states are predicted to
be the lowest excited states in our calculations using a full
density matrix is an artefact of the local nature of the ALDA
kernel, which leads to a significant underestimation of any
long range excitation.11 More sophisticated non-local func-
tionals would correct this short-coming and push the charge
transfer states significantly higher in energy. In a calculation
with a truncated density matrix these corrected states would
still be missing. We note however, that our ALDA calcula-
tions with a truncated density matrix allow us to retain those
excitations that are well described by local functionals and
correspond to those observed experimentally as lowest exci-
tations in the system. Thus excluding charge transfer states
from a calculation might indeed be desired in certain systems,
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FIG. 5. The transition density of the lowest excitation of a GaAs nanorod as found for a truncated density matrix at 75 a0 (upper figure) and the full density
matrix (lower figure). The excited state corresponding to the truncated response density matrix is 0.33 eV higher in energy than the one corresponding to the
full density matrix. In this plot, H is shown in grey, As in yellow, and Ga in purple.

especially since they often correspond to states much higher
in energy than the lowest excitation if appropriate function-
als are used. We have shown that excluding these states can
be achieved naturally in the linear-response TDDFT formula-
tion presented here by applying a suitable truncation on the
response density matrix.

E. (10,0) Carbon nanotubes

To demonstrate the linear scaling of the method with
the number of atoms, a test system of a single-walled (10,0)
carbon nanotubes (CNTs) in periodic boundary conditions is
chosen. Supercell sizes of 640, 920, 1240, 1600, and 1920
atoms are chosen, corresponding to segments of 127, 193,
257, 321, and 386 a0 in length. Due to the periodic bound-
ary conditions in place, all supercells simulate an infinitely
long (10,0) CNT.
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FIG. 6. Lowest excitation energy of a GaAs nanorod as converged with dif-
ferent response density matrix truncations.

There are well-known problems associated with using lo-
cal exchange-correlation kernels in infinite systems, which
are widely discussed in the community.10 Furthermore, the
very delocalised nature of excitations in the infinite system
means that the CNT is not an ideal candidate for introducing
a cutoff on the response density matrix, as seen in Sec. III D.
The calculation performed here should therefore be regarded
as a demonstration of linear-scaling capabilities only, while
Secs. III A–III D provide a general demonstration for the ac-
curacy of the method. The calculations were performed at a
kinetic energy cutoff of 700 eV and only the lowest excitation
energy was converged. As in Secs. III A–III D, a minimal
representation of 4 NGWFs per C atom was used for both
the conduction and the valence NGWF sets. A localisation
radius of 8.0 a0 and 12.0 a0 was selected for the valence and
conduction NGWFs, respectively. The number of unoccupied
states included explicitly in the calculation was chosen such
that all bound states were included and thus was scaled up
linearly as the supercell size was increased. For the largest
segment of 1920 atoms, this corresponds to a TDDFT opera-
tor of dimension 1.84 × 106 in canonical representation and
5.90 × 107 in conduction-valence NGWF representation, pro-
hibitively large for any non-iterative treatment of the eigen-
value problem. In order to achieve full linear scaling in both
the ground state and the TDDFT calculation, a cutoff radius
of 35 a0 was applied to both the valence and the conduction
density matrix.

The calculation time for a single iteration of the TDDFT
conjugate gradient algorithm with respect to the different su-
percell sizes of (10,0) CNTs can be found in Fig. 7. Calcu-
lations have been performed for both a fully dense response
matrix and a response matrix that has been truncated at 60 a0.
It can be seen that with a moderate response matrix trunca-
tion of 60 a0, the calculation time of a TDDFT iteration scales
fully linearly with system size. However, from Fig. 7 it is
also evident that even for fully dense response matrices, the
algorithm exhibits a near linear scaling behaviour up to the
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FIG. 7. Computation time in seconds for a single TDDFT iteration step vs.
number of atoms for different supercell sizes of (10,0) CNTs. The calcula-
tions were performed on 72 cores. The red line is a cubic fit to the calculation
time for a full response density matrix, while the blue line is a linear fit to the
calculation time for a density matrix truncated at 60 a0.

largest supercell sizes. Thus for system sizes tested here, the
construction of the response potential matrix V{1}χφ , which
only depends on the density and thus scales linearly even
for fully dense P{1}, dominates the computation time of the
TDDFT algorithm. For even larger system sizes, it is expected
that the cubic scaling associated with the fully dense matrix
operations performed to construct the TDDFT gradient and
conjugate search directions will start to strongly influence
computation times, making a truncation of P{1} necessary.
However, it is evident that the algorithm presented here ex-
hibits an excellent scaling up to large system sizes (1920
atoms) even without enforcing the truncation of the response
density matrix.

IV. CONCLUSIONS

We have presented a linear-scaling TDDFT algorithm in
the linear response formalism. We have demonstrated the ac-
curacy of the method on a number of test systems by com-
paring to results in the literature obtained with conventional
methods. The method presented in this work is ideal for sys-
tems in which the low energy excitation spectrum is domi-
nated by a few very strong transitions and only a relatively
small number of dark states. For these systems, the advan-
tages of an iterative treatment of the eigenvalue problem can
be fully exploited and the method is expected to outperform
standard time-evolution TDDFT algorithms. For systems with
a very large number of dipole forbidden states, or nanocrys-
tals with an indirect band gap, calculations become more de-
manding since a much larger number of states need to be
converged in order to produce a meaningful spectrum. How-
ever, while the orthogonality requirement of different excited
states means that the algorithm cannot scale linearly but rather
quadratically with the number of excitation energies con-
verged, we note that the prefactor in the quadratic term is

generally small, as demonstrated in the calculations on buck-
minsterfullerene.

Furthermore, we have demonstrated that the method
scales truly linearly with system size if all density matrices in
the formalism can be treated as fully sparse. We have shown
the validity of truncating the response density matrix on GaAs
nanorods for localised excitations, thus giving an example of
a realistic system that can be studied while making full use
of the advantages of the linear-scaling algorithm presented.
While we find that the truncation of the response density ma-
trix prevents us from calculating long-range charge transfer
states, we note that these states are badly represented in local
approximations to the TDDFT exchange-correlation kernel in
any case. A response density matrix truncation can thus pro-
vide an effective way of excluding unwanted charge transfer
type states from the calculation. While we have shown that
truncations of the response matrix are not always possible for
excitations of arbitrary systems, we note that the algorithm
shows excellent scaling even for fully dense response den-
sity matrices up to a system size of over 2000 atoms. Thus,
we expect the method to enable large scale computations of
optical excitations in important areas such as biophysics and
nanoscience.
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