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We present an implementation in a linear-scaling density-functional theory code of an electronic en-
thalpy method, which has been found to be natural and efficient for the ab initio calculation of finite
systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed
within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys.
Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics sim-
ulations. We introduce an approach for calibrating the parameters defining the volume in the context
of geometry optimizations and discuss their significance. Results in good agreement with simulations
using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced struc-
tural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are inves-
tigated, including one comparable in size to recent experiments. A detailed analysis of the polyamor-
phic transformations reveals three types of amorphous structures and their persistence on depressur-
ization is assessed. © 2013 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4819132]

I. INTRODUCTION

In recent years, the study of nanomaterials under pres-
sure has acquired increased scientific and technological
importance.1 In part due to their large ratio of surface to vol-
ume atoms, nanocrystals display a host of properties that dif-
fer from those of their bulk counterparts.2 New dimensions
are added to phase diagrams when the sizes, surface recon-
structions, and terminations of the nanocrystals are taken into
account.3 This has generated particular interest in nanocrys-
tals displaying quantum confinement with diverse applica-
tions ranging from biomarkers to quantum transistors.4–6

There is great technological potential in the possibility of us-
ing pressure to tune the physical properties of semiconducting
nanocrystals, that can depend sensitively on their structures.4

Attaining such control at the nanoscale holds the promise of
novel technological applications such as tunable photovoltaic
devices, shock-absorbers,7 and nanoscale stress sensors.8, 9

The additional surface effects also open the door to trans-
formation pathways that are not available to the bulk ma-
terial, potentially allowing a system to become trapped in
metastable states with novel properties.10–12 Moreover, suf-
ficiently small nanocrystals can be synthesized with few or
no defects and are thus ideal models to study the kinetics
of solid-solid phase transitions.13, 14 Recently, progress has
been made in directly observing structural transformations
in nanocrystals15 and bulk single crystals.16 Direct monitor-
ing of transformation pathways in nanosystems is, however,

a)Electronic mail: niccolo.corsini@imperial.ac.uk

still challenging with the resolution of existing experimental
probes and understanding can thus greatly benefit from the in-
sights that computer simulations provide. The nanocrystals of
interest here are of an intermediate size: larger than molecules
but too small to be treated satisfactorily with macroscopic
concepts such as strain and stress fields in continuum mod-
els. An atomistic treatment is crucial to capture the details
of the structural changes, including the shape and surface
effects.

While empirical potentials are good for modelling a
variety of materials, the complex bonding rearrangements
associated with structural transformations of materials such
as covalent semiconductors mean that ab initio methods such
as density-functional theory (DFT) are essential to capture
the details of the structure and dynamics with accuracy.
However, the large length- and time-scales associated with
the structural transformations of experimentally relevant sys-
tems pose a significant computational challenge. The O(N3)
scaling of the computational effort in traditional methods
such as the plane-wave pseudopotential (PWPP) formulation
of DFT limits the number of atoms N that can be simulated to
a few hundred and thereby seriously constrains the attainable
sizes of nanocrystals. This can be addressed by working with
a linear-scaling DFT code such as ONETEP,17 for which the
favorable balance of cost and accuracy allows the investi-
gation of nanocrystals with many thousands of atoms.18, 19

Even then, the challenge persists of modelling the pressure
transmission between solvent molecules and nanocrystals—
in analogy to experiments where nanocrystals are dissolved
and placed under pressure in a diamond anvil cell. The many
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degrees of freedom comprising realistic solvents and the
many solvent-nanocrystal collisions that need to be averaged
over to sample the appropriate thermodynamic ensemble
exclude a full ab initio treatment. One approach to tackle this
challenge is to retain an explicit description of the solvent by
embedding an ab initio simulation of the nanocrystals within
a cheaper classical description of the solvent.20–26 However,
sampling rare events such as structural transformations hap-
pening over long time-scales, whilst retaining a sufficiently
short time step to describe the solvent-nanocrystal collisions,
generally requires unfeasibly large numbers of molecular dy-
namics (MD) steps to be performed. Transformations can be
obtained within shorter simulation times by over-pressurizing
the systems but comparability with experiment is hindered
in the process. Approaches exist to surmount this issue
by accelerating the free energy landscape exploration and
have been applied to the pressure-induced structural trans-
formations of nanocrystals27, 28 and bulk crystals.29–32

In practice, however, these remain computationally
demanding.

Alternatively, constant pressure simulations of finite sys-
tems can be performed, in both MD and quasistatic geome-
try optimization, by directly optimizing the enthalpy once a
suitable definition for the finite volume has been made. This
can be done in a variety of ways in terms of atomic or elec-
tronic coordinates leading to an implicit description of the sol-
vent. Some examples of total volume definitions have been
suggested in terms of: a sum of atomic volumes,33 a func-
tion of the average inter-particle distance,34 the inertia ten-
sor eigenvalues,35, 36 and the smallest convex polyhedron to
circumscribe all surface atoms.37 These different approaches
have been compared elsewhere and were shown to quali-
tatively reproduce results obtained with explicit solvents.38

By working with quasistatic geometry optimizations at zero
temperature, one removes the need for equilibration with
barostats and thermostats thereby giving a comparatively in-
expensive way of sampling the enthalpy landscape. Depend-
ing on system complexity, this may not give a globally op-
timized structure nor precise information on transition paths;
however, it provides the structure and energetics of the nearest
local minimum.

In the present work we use an electronic enthalpy func-
tional H = U + PinVe, where U is the total Kohn-Sham inter-
nal energy of the system, Pin is the input pressure, and Ve is a
volume definition based on an electronic-density isosurface.7

The latter allows for the description of complex geometries
and the enthalpy is optimized within the linear-scaling DFT
code ONETEP. We introduce an approach to calibrate the pa-
rameters defining Ve in the context of geometry optimizations
and use it to simulate pressure-induced structural transforma-
tions in hydrogenated Si nanocrystals. Our results are com-
parable to those obtained with other methods7, 22, 24 and val-
idate our approach. Si nanocrystals are of intrinsic interest
due to their potential to overcome the indirect character of the
lowest-energy interband transition and to be useful in opto-
electronic devices.39–41 Recently, Si nanocrystals with struc-
tures based on high-pressure bulk phases have been proposed
as candidates for photovoltaic applications as they display
multi-exciton generation and high quantum efficiencies.42

They are also found to transform under pressure between a
variety of crystalline and amorphous structures that are still
the subject of theoretical and experimental investigations in
both the porous and colloidal forms. Si181H110, the largest
nanocrystal in the present work, of diameter 2.2 nm, is com-
parable in size to experimentally tested organically passivated
colloidal nanocrystals43 and demonstrates the capability of
our approach.

II. METHODOLOGY

The linear-scaling DFT code ONETEP is based on the
single particle density-matrix (DM) n(r, r′) formulation of
the Kohn-Sham equations in terms of a set of local orbitals
{φα(r)}, referred to as non-orthogonal generalized Wannier
functions (NGWFs). These are spatially localized within
spheres of radii {Rα} centered on the atomic coordinates as

n(r, r′) =
∑
αβ

φα(r)Kαβφ∗
β(r′), (1)

where Kαβ is called the density-kernel. The electronic den-
sity ρ(r) is related to the DM by ρ(r) = 2n(r, r), where the
factor of two accounts for the spin degeneracy. The NGWFs
are themselves expanded in terms of a fixed underlying ba-
sis of psinc functions equivalent to a systematic plane-wave
basis.44 In the course of a calculation the total energy is mini-
mized with respect to both Kαβ and {φα} in two nested loops,
subject to the constraints of normalization and idempotency.45

Linear scaling is achieved by exploiting the property of near-
sightedness that allows the DM to be truncated for systems
with an energy gap.46 The electronic structure can then be de-
scribed with plane-wave accuracy in terms of a minimal basis
of in situ optimized NGWFs.

It has been shown that the elastic properties of bulk Si in
the diamond phase calculated with ONETEP and the PWPP
code CASTEP47 give equivalent results48 when using the
same norm-conserving Si pseudopotential,49 local density ap-
proximation exchange-correlation functional,50, 51 and plane-
wave cutoff Ec. Beyond the fact that it is well-described by
DFT, Si was used as a test system here due to the plethora
of experimental data and computational studies with different
pressure methods available for comparison.

For the calibration we require a reference DFT bulk
modulus at zero pressure B0 and its pressure derivative
B ′

0 = ∂B/∂P |P=0. This was calculated with CASTEP using
a 2-atom primitive simulation cell, a grid of 8 × 8 × 8 k-
points and Ec = 800 eV. By fitting the universal Vinet equa-
tion of state52, 53 we obtained values of B0 = 96.85 GPa and
B ′

0 = 4.08.
The local orbital approach has the advantage that the

{φα} are strictly zero on all grid points outside the local-
ization radii54 and vacuum comes at a negligible compu-
tational overhead. This is particularly advantageous for fi-
nite systems as interaction with periodic images can easily
be eliminated.55 Pulay corrections to the Hellmann-Feynman
forces are required to achieve accurate ionic forces and
optimized structures.56, 57 The use of in situ optimized or-
bitals reduces the egg-box effect58 observed in fixed orbital
approaches.



084117-3 Corsini et al. J. Chem. Phys. 139, 084117 (2013)

The nanocrystals were quasistatically relaxed at dif-
ferent pressures using the quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno algorithm for geometry optimization.59 The
parameters which control the accuracy of the geometry opti-
mization must be carefully chosen for the calculations to be
converged and the structures correctly relaxed. Unless spec-
ified otherwise we used Ec = 800 eV, a universal NGWF
radius Rφ = 8 a0, an atomic displacement tolerance of
10−2 a0, an energy tolerance per atom of 2 × 10−5 Ha, and
a force tolerance of 10−3 Ha a−1

0 .
The electronic enthalpy method to simulate finite systems

under external pressure proposed by Cococcioni et al.7 in-
troduces a thermodynamic functional H = U + PinVe which
can be minimized self-consistently within DFT algorithms.
Ve is defined as the interior of an electronic-density isosur-
face at a chosen cutoff density α. Introducing the Heaviside
step function in terms of density values θ (ρ), Ve is calculated
as

Ve =
∫

θ (ρ(r) − α) d3r. (2)

For computational purposes, the step function can be approx-
imated by the complementary error function as

θ (ρ(r) − α) � 1

2
erfc

(
α − ρ(r)

σ
√

2

)
. (3)

The parameter σ adjusts the sharpness of the step function and
plays an important role for numerical reasons. The resulting
potential contribution is

	V (r) = Pin
δVe

δρ(r)

= Pin

σ
√

2π
exp

(
− (ρ(r) − α)2

2σ 2

)
. (4)

Since the potential does not explicitly depend on the nuclear
positions, the compression is implicitly transmitted to the
nuclei by virtue of the forces obtained from the Hellmann-
Feynman theorem.60 This can be related to the effect of 	V ,
which for a decaying density profile as in Fig. 1, is a dis-
torted Gaussian in real space and favors the compression of
the electronic density for positive pressures. The shape of
	V is determined by the pair of input parameters α and σ ,
and approximates the solvent-nanocrystal interaction. α de-
fines the excluded volume of the solvent molecules and σ

controls the range and intensity of interaction in a manner
reminiscent of soft-sphere potentials. While the method de-
scribes the solvent implicitly, providing a homogeneous and
time-averaged description, the emphasis is laid on the role
played by electrons as pressure mediators with an account of
the shape of the nanocrystal as the pressure is applied nor-
mal to the isosurfaces. This results in a natural description
that allows the seamless modelling of the excluded volume
of intricate nanocrystal geometries. It also removes the need
for equilibration with barostats and focuses the computational
effort on the electronic structure of the nanocrystal.

Figure 2 shows the isosurface bounding Ve for a range
of values of α. For larger values of α, the isosurface de-
scribes voids inside the nanocrystal, revealed by changes in

FIG. 1. (a) Normalized hydrogenic 1s electronic density ρ(r); (b) resulting
potential 	V (r) for different values of α with constant σ = 5 × 10−5a−3

0 and

pressure Pin = 1 GPa; (c) 	V (r) at constant α = 3 × 10−4a−3
0 for different

values of σ again with Pin = 1 GPa.

slope in the plot, and results in pressure being induced in-
ternally which compensates the applied pressure. In order to
describe a realistic solvent, α has to be chosen sufficiently
small to apply a homogeneous compression without describ-
ing the rugosities of the nanocrystal too closely. When going
to very small values of α, unphysically large excluded vol-
umes are obtained. Figure 1 also shows that for a given choice

FIG. 2. Electronic volume Ve as a function of the density cutoff α for Si71H60
relaxed at 0 GPa and the corresponding isosurfaces for α = 3 × 10−4a−3

0 and

α = 2 × 10−2a−3
0 .
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of α = 3 × 10−4a−3
0 , σ = 5 × 10−4a−3

0 leads to a 	V (r) that
clearly fails to vanish at large radii (Fig. 1(c)). From Eq. (4)
it is evident that far from the nanocrystal where ρ → 0, the
potential 	V ∼ (Pin/σ ) exp(−α2/2σ 2), and therefore a suffi-
ciently small value of σ /α, must be chosen for the excluded
volume to be well-defined. However, a sufficiently large value
of σ must be chosen for the potential 	V (r) to be accurately
integrated on the underlying real-space grid which has a spac-
ing of � = 0.25a0 in the present work. The above consid-
erations give us a range of sensible values for α and σ , but
within this range physical properties still depend on the cho-
sen values. An approach is still needed to better resolve these
depending on the system.

III. CALIBRATION

In principle, if the parameters α and σ defining a physi-
cal Ve were chosen correctly, an effective pressure Peff equal
to the chosen input pressure Pin would be felt within the
nanocrystal. Ve could be determined for different solvent-
nanocrystal interfaces by comparison with simulations using
explicit solvents, e.g., with MD. This would however not be
practical in a fully ab initio way as explained in Sec. I. An
empirical parameterization would also be difficult consider-
ing the limited resolutions of experimental methods. Alter-
natively, α and σ can be calibrated by comparing Peff and
Pin if a satisfactory definition of Peff is available. This can be
done by exploiting the virial theorem in MD simulations,36

but not in geometry optimization calculations. For these,
a promising approach is to exploit the experimental43 and
computational61 result that bonds in the bulk-like core of suf-
ficiently large alkane-terminated diamond phase Si nanocrys-
tals display elastic properties similar to the bulk for a range
of sizes. Peff can then be estimated for a range of systems and
pressures from the compression of core bonds after quasistatic
geometry optimization.

Here we use the Vinet equation, with the bulk values of
B0 and B ′

0 obtained as discussed in Sec. II, expressed in terms
of the compressed and equilibrium (0 GPa) bulk-like conven-
tional lattice parameters a and aeq:

E(a) = E0 + B0a
3
eq

(B ′
0 − 1)2

(
1 − 1

2

[
3a

aeq
(B ′

0 − 1) − 3B ′
0 + 5

]

× exp

[
−3

2
(B ′

0 − 1)

(
a

aeq
− 1

)])
. (5)

Defining a for the nanocrystal in terms of averaged bond
lengths for core Si atoms (chosen as those atoms that are
bonded exclusively to other Si atoms), an effective pressure
Peff experienced by the nanocrystal can be estimated from the
volume derivative of the Vinet equation of state:

Peff(a) = 3B0

(
aeq

a

)2(
1 − a

aeq

)

× exp

[
−3

2
(B ′

0 − 1)

(
a

aeq
− 1

)]
. (6)

The Vinet equation holds in the absence of phase transitions
and was found to give similar, albeit better fitted, results than

the Birch-Murnaghan equation.62 Peff can then be compared
to the input pressure Pin that generated the compression, thus
allowing the calibration of α and σ .

A hydrogenated tetrahedral Si71H60 nanocrystal in the
diamond phase was used for the calibration as it displays
a sizable core which behaves elastically like the bulk and
justifies our use of bulk values for B0 and B ′

0 in the cali-
bration. The average Si–Si bond length is found to be con-
tracted compared to the bulk; the contraction is reduced and
tends towards the bulk value as the size of the nanocrystal
is increased. Looking at individual Si–Si bonds, it is found
that the outer shell is contracted, which has been interpreted
as due to surface stress,63, 64 while inner shells substantially
agree with bulk values. Similar results have been found for
Si29H36 and Si35H36 using DFT with norm-conserving pseu-
dopotentials and a local density approximation exchange-
correlation functional.61 In classical linear elasticity, inhomo-
geneities, whether in vacuo or embedded in a material, have
size-independent elastic fields.65 This is the result of neglect-
ing surface energies which can be justified when the ratio of
surface to volume atoms is small. At the nanoscale, however,
this ratio becomes important and the surface induces size-
dependent elastic fields that are long-range.66 One would ex-
pect the surfaces to induce a size-dependent strain-field and
to distort the core atoms for the nanocrystal sizes investigated
in this work. However, the stiffness of Si nanocrystals and
the absence of reconstruction of the hydrogen-passivated sur-
faces result in distortions that are smaller than the displace-
ment tolerance. This limits the effect of the surfaces for the
sizes considered and simplifies the mapping between effec-
tive pressure and compression. While the bond distributions
change with the selection of the core atoms, the positions of
peaks of the distribution are found to be insensitive, within
the displacement tolerance, to that choice when excluding the
outer shell atoms.

Figure 3 shows the results of our calibration for a range of
parameter choices. A procedure where B0 and B ′

0 were fitted
separately from Eq. (5) for each α (diamonds) is seen to pro-
duce poor agreement between Peff and Pin. By contrast, it was
found that using fixed values of B0 and B ′

0, either from DFT
bulk values from CASTEP (crosses) or experimental values
(squares), produced very similar results, and the expected lin-
ear relationship was observed (Fig. 3(a)). This suggests that
the assumptions entering our calibration approach and the vol-
ume definition are valid. Figure 3(b) shows that for a fixed
value of α, the Peff curves converge as a function of σ , to-
wards the σ = 5 × 10−5a−3

0 line. This highlights the impor-
tance of tuning σ for an accurate definition of Ve as discussed
in Sec. II. Finally, given an appropriate choice of σ , Fig. 3(c)
shows that there is a dependence of the compression on the
chosen α. This can be understood from the volume definition
of Eq. (2): changing α corresponds to using a different model
of solvent-nanocrystal interaction, by altering the electronic
density up to which solvent molecules approach the nanocrys-
tal. The range of α values 3.0 × 10−4 to 1.0 × 10−3a−3

0 is
found to give agreement between Peff and Pin within 15%.

While the parameters were calibrated on the Si71H60

nanocrystal and model a representative solvent-nanocrystal
interface, the parameters are expected to be transferable to
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FIG. 3. Calibration plots showing Peff vs Pin: (a) for different parameterization schemes of B0, all for α = 3 × 10−4a−3
0 and σ = 5 × 10−5a−3

0 ; (b) for different

values of σ , all using the DFT bulk value of B0 and α = 3 × 10−4a−3
0 ; (c) for different values of α, all using the DFT bulk value of B0 and σ = 5 × 10−5a−3

0 .

silicon nanocrystals of different sizes and shapes, particularly
if they have similar surface facets, surface reconstructions,
or similar ligands. We illustrate this by comparing the ef-
fective pressure Peff obtained at a representative value of Pin

= 10 GPa, with α = 3.0 × 10−4a−3
0 and σ = 5.0 × 10−5a−3

0 ,
for three different nanocrystal sizes: Si35H36, Si71H60, and
Si181H110. We obtain Peff = 11.9, 11.5, and 11.5 GPa, re-
spectively, indicating that the bulk-like cores of Si71H60

and Si181H110 have identical responses under pressure while
Si35H36 displays a small discrepancy, which can be under-
stood as due to the small nanocrystal size and consequent
small region of bulk-like core. The transferability is expected
to hold beyond hydrogenated silicon because all semiconduc-
tor nanocrystal surfaces, with or without organic ligands, will
display a fairly similar range of values of valence electronic
density inside and a similar exponential decay rate outside the
surface.82 The solvent-nanocrystal interface resulting from a
given choice of parameters can be considered appropriate so
long as the lengthscale of the isosurface variations is smaller
than the size of the solvent molecules given by their van der
Waals surface.

IV. RESULTS: PRESSURE-INDUCED
TRANSFORMATIONS IN SILICON NANOCRYSTALS

We now turn our attention to structural transformations
in the Si nanocrystals Si35H36 and Si71H60, which have been
studied by other methods.20–24 We then demonstrate capa-
bility for larger system sizes by studying Si181H110. Bulk Si
is of great technological importance and has been widely
used as semiconductor in both its crystalline and amorphous
forms. Its phase diagram has been extensively studied and,
under pressure, bulk Si has been observed to transform be-
tween 12 different structures. It transforms from the cubic
diamond to the β-Sn phase at 11.7 GPa, followed by the
Imma phase, primitive hexagonal (ph), orthorhombic, hexag-
onal closed packed (hcp), and face centered cubic (fcc) phases
at respectively 13.2, 15.4, 38, 42, and 79 GPa.67–69 Upon pres-
sure release the ph and β-Sn phases are observed, but the dia-
mond phase is not recovered upon full release of the pressure.

Instead, a host of crystalline and amorphous metastable struc-
tures are observed, the most common of which are the BC8
and R8 phases that correspond to distorted tetrahedral struc-
tures. Unlike the bulk, the small size and the stabilising ef-
fect of the surfaces of Si nanocrystals allows for metastable
structures and transformation mechanisms that are still the
subject of investigation. Size-dependence of structural, opti-
cal, and electronic properties has been reported for a range of
nanocrystal sizes in both colloidal3, 43 and porous forms.70, 71

Recent X-ray diffraction (XRD) experiments on colloidal
plasma-synthesized Si nanocrystals, where the surfaces are
initially H terminated and later functionalized with dodecane,
investigate nanocrystals of diameters 3.2, 3.8, and 4.5 nm, un-
der pressures in the range 0–73 GPa at room temperature.43 A
transformation between the diamond and what is interpreted
to be the ph structure is reported in the range 17–22 GPa
although the small size of the sample results in significant
broadening of the spectra and makes it difficult to identify
the structure. Another structural transformation occurs in the
range 40–44 GPa and matches an hcp structure. The ph struc-
ture is recovered upon decompression down to as low as
18.4 GPa followed by a stable amorphous structure upon com-
plete decompression.

XRD and Raman spectroscopy experiments70 performed
on porous Si with average crystallite diameters ∼5 nm (with
distributions at 3 nm and 7 nm) report a transformation
from diamond to a high-density amorphous (HDA) phase at
14 GPa which, upon pressure release, transforms to a low-
density amorphous (LDA). More recent work71 on porous Si
with crystallites of ∼4 nm average diameter observe a trans-
formation from diamond to ph phase at 20 GPa with no amor-
phisation up to 39 GPa. A HDA phase is recovered upon de-
compression around 15 GPa followed by an LDA phase at
4.5 GPa. Under a further pressurization cycle, an amorphous
to crystalline transformation is observed between LDA and
ph at 18 GPa. Such reversible transformations between LDA,
HDA, and ph phases have also been observed for amorphous
bulk Si (a-Si).72–74

Theoretical investigations have attempted to characterize
these amorphous phases in bulk Si73–78 and hydrogenated Si
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nanocrystals.20–24 The LDA phase has been described as a
disordered tetrahedrally coordinated network, the HDA as a
deformed tetrahedral network75 with the presence of intersti-
tials increasing the coordination to 5–6, and finally a very-
high-density amorphous phase (VHDA) has been postulated78

with coordinations 8–9 as found also in ice.79 This classifica-
tion of the amorphous structures is adopted in this paper.

Structural properties are generally analysed in terms of
bond-length distribution, coordination number, and bond-
angle distribution. Moreover, we employ ring statistics as a
way of tracking the evolution of the covalent Si networks. Ev-
ery Si atom can be treated as a node and bonds as links con-
necting the nodes. We define an n-membered ring as a closed
path connecting n atoms according to Guttman’s definition,
focusing on the total number of rings RT and the proportion
of nodes belonging to at least one n-membered ring Pn.80, 81

Two atoms are considered to be bonded when separated by
a distance smaller than the first minimum of the radial dis-
tribution function of the bulk Rc = 5.33a0. All nanocrystals
were initially relaxed with geometry optimization at 0 GPa,
and then pressure was applied in steps of 5 GPa or less, re-
laxing the geometry at every pressure to find the minimal en-
thalpy configuration. Si35H36 and Si71H60 were investigated
in a pressure range 0–50 GPa while only 0–25 GPa was con-
sidered for Si181H110 as the system becomes metallic beyond
25 GPa and occupancy smearing would be needed.

A density cutoff value of α = 3.0 × 10−4a−3
0 was chosen

for the rest of the calculations because it was shown to result
in a good calibration (Fig. 3) and as it enables direct compar-
ison with the simulations of Cococcioni et al.7

Figure 4 shows the structures of Si71H60 as it is com-
pressed in the range 0–50 GPa and depressurized to 5 GPa,
while Fig. 5 shows a range of descriptors of these transitions.
The bond-angle distribution in Fig. 5(a) initially shows a sin-
gle peak at 109.5◦, typical of the tetrahedral diamond struc-
ture. The peak broadens when the pressure applied increases
from 0 GPa to 20 GPa, which reflects a lower degree of sym-
metry in the structure. No change in the coordination num-
ber of Si atoms is observed at this stage and a tetrahedral co-
ordination is retained for the innermost Si atoms. When the
pressure applied is increased to ∼35 GPa, a structural change
is observed as the nanocrystal amorphizes, as evidenced by
the broad bond-angle distribution. The transformation is me-
diated by the breaking and making of bonds which are ac-
companied by the appearance of interstitial atoms and an in-
crease in coordination numbers (Fig. 5(b)). To better resolve
the transformation, calculations for Si71H60 were repeated in
steps of 2 GPa in the interval 20–30 GPa. Between 21 and
30 GPa, the average coordination of Si atoms (Fig. 5(c)) in-
creases from 4 at 0–20 GPa, to 5.1 at 27 GPa which is consis-
tent with a transformation from diamond to HDA. However,
even at 30 GPa the nearest neighbour peak remains, suggest-
ing that some local order is retained and the first coordination
shell is preserved. As the pressure is increased further, the
average coordination reaches 8.3 at 50 GPa which matches
that of a VHDA structure. Upon pressure release, the aver-
age coordination plummets to 6.7 at 20 GPa and 4.3 at 5 GPa
corresponding to a disordered tetrahedral network consistent
with an LDA structure. Similarly, for Si35H36 one obtains a

FIG. 4. Structures of Si71H60 at 0, 25, 30, and 50 GPa and on releasing
pressure at 20, 10, and 5 GPa.

coordination of 4 at 0 GPa, 5.5 at 30 GPa, 7.3 at 40 GPa,
7.7 at 50 GPa, 4.5 upon decompression to 5 GPa, and for
Si181H110 4 at 0 GPa and 5.5 at 25 GPa. Figure 5(d) shows
the electronic volume per atom for Si71H60. This reveals dis-
continuous changes in the intervals 20–21 GPa and again at
27–30 GPa, which suggests that the structural transformations
from diamond to HDA and HDA to VHDA are first order.

Our results are consistent with previously reported Car-
Parrinello MD simulations on Si35H36 and Si71H60 at 600 K
using a classical explicit soft-sphere solvent22 and on Si35H36

at 300 K using the electronic enthalpy method.7 In the former
simulations, transformations from the diamond to an amor-
phous structure with average coordination of core Si atoms of
7.3 were reported at about 30 GPa for Si71H60 and 35 GPa
for Si35H36. An amorphous structure with average coordina-
tion 4.3 is recovered upon decompression to 5 GPa. In the
latter simulations, Si35H36 is found to amorphize around 26–
28 GPa with average coordination of Si atoms reaching ∼6.5
and to remain amorphous upon pressure release to 0 GPa with
an average coordination of ∼4. No sensitivity of the results
was reported when changing α. This can be understood as re-
sulting from the small range of values chosen, combined with
thermal noise concealing the dependence on parameters seen
in the present work. Differences in transformation pressure
for the same system between MD simulations using an ex-
plicit solvent22 and the electronic enthalpy method7 are due
to the different way that pressure is applied.36 We do not ex-
pect direct agreement in the transformation pressure with MD
nor experimental results considering that we have used a qua-
sistatic approach: in the absence of thermal fluctuations, one
needs to overpressurize the system to overcome the large ac-
tivation energies associated with the energetic cost of making
and breaking bonds. The absence of thermal noise in our sim-
ulations does, however, facilitate the detailed monitoring of
the amorphization and provides complementary information
to that obtained with MD.

The ring statistics shown in Figs. 5(e) and 5(f) indicate
the presence of four distinct regions. In the interval 0–20
GPa, only 6-membered rings are present. The population of
6-membered rings decays in favor of 3-, 4- and 5-membered
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FIG. 5. Structural transformations of Si71H60 under pressure (the shaded region corresponds to the depressurization): (a) distribution of the bonded Si–Si–Si
angles at 20, 25, and 35 GPa; (b) distribution of the coordination numbers of Si atoms at 20, 25, and 35 GPa; (c) total number of rings RT with pressure;
(d) proportion of nodes belonging to at least one n-membered ring Pn; (e) average coordination number of Si atoms with pressure; (f) electronic volume per
atom with pressure.

rings in the interval 21–30 GPa. Between 30 and 50 GPa, the
3-membered ring population grows further at the expense of
4- and 5-membered rings and dominates at 50 GPa. Upon
pressure release, the 4-, 5-, 6-, and 7-membered ring popu-
lation recovers while the 3-membered ring population drops
sharply as the nanocrystal dilates. 6-membered rings are a sig-
nature of the corner-sharing tetrahedra in the diamond cubic
structure, while 3-membered rings arise through the forma-
tion of the equilateral triangles that cause the peak at 60◦ in
the bond-angle distribution (Fig. 5(a)). The presence of 3-, 4-,

and 5-membered rings indicates amorphization and the larger
7-membered ring the formation of voids (Fig. 6). Our results
are consistent with the existence of three amorphous struc-
tures visited during the pressure-induced structural transfor-
mation: HDA corresponding to average coordination numbers
∼5–6, VHDA with coordinations ∼8–9, and LDA with coor-
dination ∼4 obtained upon pressure release.

A reversible amorphization diamond→HDA→diamond
is obtained when performing a pressure cycle between
0 and 30 GPa (Fig. 7). By contrast, when increasing
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FIG. 6. 3-(yellow), 4-(orange), 5-(red), 6-(green), and 7-(blue) membered
rings in Si71H60 upon pressure release to 5 GPa.

the pressure all the way to 50 GPa, irreversible bonding
events accompany the transformation, which proceeds as
diamond→VHDA→LDA. The final LDA structure is found
to be higher in energy compared to the original diamond struc-
ture and thus corresponds to a local minimum in energy. The
nanocrystals display hysteresis and comparing the upstroke
and downstroke 20 GPa structures, it is clear that they are
respectively crystalline and amorphous. This behavior
demonstrates the possibility of trapping nanocrystals in un-
conventional bonding geometries when performing a pressure
cycle, yielding electronic properties different from the bulk.
Of great promise is the possibility of designing materials with
desired properties using pressure as a way to tune these.

In particular, it is found that the HOMO–LUMO gap
changes dramatically under pressure and the way this hap-
pens is strongly size-dependent. While it is well known that
the local density approximation underestimates the size of the
gap for Si, it does give qualitative information and signifi-
cant trends. From Fig. 8 we observe that beyond a certain
pressure, the gap drops sharply to a lower value. All clusters
are semiconductors at low pressure with increased gaps for
the smaller nanocrystals compared to the bulk. This can be
understood as due to quantum confinement which is signif-
icant for the nanocrystals under investigation. The Si181H110

nanocrystal gap sharply drops to 0.04 eV at ∼25 GPa showing
that it becomes metallic, whereas the smaller clusters retain a

FIG. 7. Distribution of Si–Si distances in Si71H60 under a pressure cycle at
pressures 0, 20, and 30 GPa upstroke (top panel) and downstroke starting
from 30 GPa (bottom panel).

FIG. 8. HOMO–LUMO gaps of Si35H36, Si71H60, and Si181H110 under pres-
sure and comparison with experiment43, 83 and DFT calculations of bulk Si
in the diamond structure.

sizeable gap even at higher pressures. In the pressure range
0–20 GPa, the gap of Si35H36 increases with a slope that re-
duces as the pressure is ramped up. Meanwhile, for Si71H60,
the gap increases at first and decreases in the range 10–20
GPa. For Si181H110, the gap decreases linearly in the range
5–20 GPa. This size-dependent behavior can be interpreted
as a competition between quantum confinement and the neg-
ative pressure coefficient of diamond Si. The former tends to
increase the gap as the nanocrystals are compressed, while
the latter tends to decrease it due to the dominance of the in-
direct transition (corresponding to Xconduction − valence in the
bulk). Si181H110, of diameter 2.2 nm, has a change of gap with
pressure of −10.7 meV GPa−1 which is of the same order as
the experimental results for 2.6 nm diameter nanocrystals of
−17.2 meV GPa−1.43 As the nanocrystal size is increased, the
quantum confinement effect is expected to vanish and a linear
decrease of the gap remain with a slope tending to the DFT
value for bulk diamond Si of −15.4 meV GPa−1. The above
results highlight the capability of our approach to simulate
sizes of experimental relevance with DFT accuracy.

V. CONCLUSION

We have implemented an electronic enthalpy method in
a linear-scaling DFT code (ONETEP) to simulate nanocrys-
tals under pressure. An approach to calibrate the parameters
defining the electronic volume in the context of geometry
optimizations was proposed, demonstrating how the pressure
felt inside the nanocrystal can be successfully matched to the
input pressure in the electronic enthalpy functional. We have
applied this method to the structural transformations of hy-
drogenated Si nanocrystals of different sizes and obtained
results in good agreement with simulations using explicit
solvents. Our quasistatic investigation has allowed for the
detailed study of polyamorphic transformations and provided
information that would be difficult to extract with the thermal
noise of a MD simulation. Size-dependent structural trans-
formations were obtained between the diamond structure and
the amorphous LDA, HDA, and VHDA structures. The be-
havior of the intermediate structures upon pressure release
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was investigated and depressurizing from HDA and VHDA
structures was found to give respectively diamond and LDA
structures. These have distinct electronic properties and the
changes in HOMO–LUMO gaps with pressure were ana-
lyzed for different nanocrystal sizes and display qualitative
agreement with experiment of similar diameters. The present
work highlights the capability of our approach; barring further
progress in the synthesis and probing of smaller nanocrystal
sizes, techniques such as linear-scaling DFT become essen-
tial to simulate sizes of experimental relevance with quantum
accuracy.
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Comput. Mater. Sci. 37, 526 (2006).
39R. Anthony and U. Kortshagen, Phys. Rev. B 80, 115407 (2009).
40D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys.

Lett. 88, 233116 (2006).
41W. L. Wilson, P. F. Szajowski, and L. E. Brus, Science 262, 1242 (1993).
42S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, and G. Galli,

Phys. Rev. Lett. 110, 046804 (2013).
43D. C. Hannah, J. Yang, P. Podsiadlo, M. K. Y. Chan, A. Demortière,

D. J. Gosztola, V. B. Prakapenka, G. C. Schatz, U. Kortshagen, and R. D.
Schaller, Nano Lett. 12, 4200 (2012).

44A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and M. C. Payne, Comput.
Phys. Commun. 147, 788 (2002).

45R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).
46E. Prodan and W. Kohn, Proc. Natl. Acad. Sci. U.S.A. 102, 11635

(2005).
47S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K.

Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).
48C.-K. Skylaris and P. D. Haynes, J. Chem. Phys. 127, 164712 (2007).
49J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47, 4174

(1993).
50D. M. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).
51J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
52P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, J. Phys. C 19, L467 (1986).
53P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys.: Condens. Matter

1, 1941 (1989).
54While the density technically oscillates outside the localization radii, the

magnitude of these oscillations is of the order of 10−7a−3
0 , well below the

typical values of α, and hence is not a hindrance when defining an elec-
tronic volume.44

55N. D. M. Hine, J. Dziedzic, P. D. Haynes, and C.-K. Skylaris, J. Chem.
Phys. 135, 204103 (2011).

56Á. Ruiz-Serrano, N. D. M. Hine, and C.-K. Skylaris, J. Chem. Phys. 136,
234101 (2012).

57N. D. M. Hine, M. Robinson, P. D. Haynes, C.-K. Skylaris, M. C. Payne,
and A. A. Mostofi, Phys. Rev. B 83, 195102 (2011).

58J. Soler, E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, and D.
Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

59J. Nocedal and S. J. Wright, Numerical Optimization (Springer Verlag,
1999).

60R. P. Feynman, Phys. Rev. 56, 340 (1939).
61E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi, and S.

Ossicini, Phys. Rev. B 69, 155411 (2004).
62F. Birch, J. Geophys. Res. 57, 227, doi:10.1029/JZ057i002p00227 (1952).
63D. Buttard, G. Dolino, C. Faivre, A. Halimaoui, F. Comin, V. Formoso, and

L. Ortega, J. Appl. Phys. 85, 7105 (1999).
64H.-C. Weissker, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 67, 245304

(2003).

http://dx.doi.org/10.1039/b517779k
http://dx.doi.org/10.1146/annurev.pc.46.100195.003115
http://dx.doi.org/10.1103/PhysRevLett.76.4384
http://dx.doi.org/10.1021/jp9535506
http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100432
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevLett.94.145501
http://dx.doi.org/10.1021/nl9017572
http://dx.doi.org/10.1073/pnas.1016022107
http://dx.doi.org/10.1073/pnas.1016022107
http://dx.doi.org/10.1126/science.276.5311.398
http://dx.doi.org/10.1080/01411599908224513
http://dx.doi.org/10.1021/nl3007165
http://dx.doi.org/10.2138/rmg.2001.44.02
http://dx.doi.org/10.1126/science.1063581
http://dx.doi.org/10.1126/science.1204713
http://dx.doi.org/10.1103/PhysRevLett.109.205503
http://dx.doi.org/10.1103/PhysRevLett.109.205503
http://dx.doi.org/10.1063/1.1839852
http://dx.doi.org/10.1063/1.1839852
http://dx.doi.org/10.1016/j.cpc.2008.12.023
http://dx.doi.org/10.1103/PhysRevB.85.115404
http://dx.doi.org/10.1103/PhysRevLett.84.682
http://dx.doi.org/10.1016/S0927-0256(00)00185-3
http://dx.doi.org/10.1063/1.1345497
http://dx.doi.org/10.1063/1.1523894
http://dx.doi.org/10.1002/cphc.200400589
http://dx.doi.org/10.1021/nl049403d
http://dx.doi.org/10.1021/jp0714670
http://dx.doi.org/10.1063/1.2790431
http://dx.doi.org/10.1021/nl900609d
http://dx.doi.org/10.1524/zkri.220.5.489.65078
http://dx.doi.org/10.1140/epjb/e2010-10763-x
http://dx.doi.org/10.1063/1.3086043
http://dx.doi.org/10.1016/j.solidstatesciences.2009.05.028
http://dx.doi.org/10.1088/0953-8984/14/26/101
http://dx.doi.org/10.1063/1.1513153
http://dx.doi.org/10.1103/PhysRevB.57.4730
http://dx.doi.org/10.1039/c004053c
http://dx.doi.org/10.1039/c004053c
http://dx.doi.org/10.1103/PhysRevB.69.125414
http://dx.doi.org/10.1016/j.commatsci.2005.12.028
http://dx.doi.org/10.1103/PhysRevB.80.115407
http://dx.doi.org/10.1063/1.2210788
http://dx.doi.org/10.1063/1.2210788
http://dx.doi.org/10.1126/science.262.5137.1242
http://dx.doi.org/10.1103/PhysRevLett.110.046804
http://dx.doi.org/10.1021/nl301787g
http://dx.doi.org/10.1016/S0010-4655(02)00461-7
http://dx.doi.org/10.1016/S0010-4655(02)00461-7
http://dx.doi.org/10.1103/RevModPhys.32.335
http://dx.doi.org/10.1073/pnas.0505436102
http://dx.doi.org/10.1524/zkri.220.5.567.65075
http://dx.doi.org/10.1063/1.2796168
http://dx.doi.org/10.1103/PhysRevB.47.4174
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1088/0022-3719/19/20/001
http://dx.doi.org/10.1088/0953-8984/1/11/002
http://dx.doi.org/10.1063/1.3662863
http://dx.doi.org/10.1063/1.3662863
http://dx.doi.org/10.1063/1.4728026
http://dx.doi.org/10.1103/PhysRevB.83.195102
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1103/PhysRevB.69.155411
http://dx.doi.org/10.1029/JZ057i002p00227
http://dx.doi.org/10.1063/1.370518
http://dx.doi.org/10.1103/PhysRevB.67.245304


084117-10 Corsini et al. J. Chem. Phys. 139, 084117 (2013)

65J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).
66P. Sharma and S. Ganti, J. Appl. Mech. 71, 663 (2004).
67S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 12021

(1990).
68H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).
69H. Olijnyk, S. Sikka, and W. B. Holzapfel, Phys. Lett. A 103, 137

(1984).
70S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature

(London) 414, 528 (2001).
71N. Garg, K. K. Pandey, K. V. Shanavas, C. A. Betty, and S. M. Sharma,

Phys. Rev. B 83, 115202 (2011).
72K. K. Pandey, N. Garg, K. V. Shanavas, S. M. Sharma, and S. K. Sikka,

J. App. Phys. 109, 113511 (2011).
73D. Daisenberger, M. Wilson, P. F. McMillan, R. Q. Cabrera, M. C. Wilding,

and D. Machon, Phys. Rev. B 75, 224118 (2007).

74D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R. Quesada
Cabrera, M. Wilson, and P. F. McMillan, J. Phys. Chem. B 115, 14246
(2011).

75T. Morishita, Phys. Rev. Lett. 93, 055503 (2004).
76T. Morishita, J. Chem. Phys. 130, 194709 (2009).
77M. Durandurdu, Phys. Rev. B 73, 035209 (2006).
78M. Durandurdu and D. A. Drabold, Phys. Rev. B 64, 014101 (2001).
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