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Abstract. ONETEP is a linear-scaling code for performing first-principles total-
energy calculations within density-functional theory (DFT). The method is based on
the density-matrix formulation of DFT and involves the iterative minimisation of the
total energy with respect to a set of local orbitals and a density kernel. An overview is
given of the kernel optimisation methods proposed in the literature and implemented in
ONETEP, focussing in particular on the constraints of compatibility, idempotency and
normalisation that must be applied. A method is proposed for locating the chemical
potential which may be useful in applying the normalisation constraint and analysing
the electronic structure near the Fermi level.
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1. Introduction

The popularity of density-functional theory (DFT) has grown enormously over the last

two decades. This is largely due to the balance that it achieves between two competing

requirements: on the one hand it gives a sufficiently accurate treatment of electron

correlation for many purposes; on the other hand the computational effort required

is relatively low. Both of these strengths derive from the mapping between the real

many-electron system and a fictitious system of non-interacting particles that lies at

the heart of DFT [1, 2]. This mapping provides the formal connection needed to treat

exchange and correlation within the independent electron approximation while reducing

the complexity of the problem to the solution of a single-particle Schrödinger equation.

The O(N3) asymptotic scaling of traditional DFT methods with system size N

arises from the cost of diagonalising the single-particle Hamiltonian or, if that process

is carried out iteratively, maintaining the orthogonality of the extended single-particle

wave functions. While this cubic scaling is favourable when compared with methods
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based on correlated wave functions, it still does not permit calculations on the scale

required to tackle nanostructures and biological macromolecules containing thousands

of atoms. For this reason a considerable effort has been expended on the development of

linear-scaling or O(N) methods which exploit the “nearsightedness” of quantum many-

body systems [3, 4] to ensure that the computational cost increases only linearly with the

system size. The long-term investment by several groups is now resulting in a number

of new codes, including ONETEP [5, 6], SIESTA [7] and CONQUEST [8, 9], which have

been designed specifically for O(N) calculations.

A detailed comparison of the various O(N) methods proposed for insulators and

semiconductors can be found in existing review articles [10, 11]. Briefly, the methods

may be divided into four categories: projection methods such as the Fermi operator

expansion [12, 13]; the divide and conquer approach [14, 15]; generalised energy

functionals for non-orthogonal orbitals [16, 17, 18, 19, 20, 21] and density-matrix (DM)

minimisation methods. The ONETEP code falls into the last of these categories, and

this class of methods is the focus of this article.

Section 2 outlines the general approach taken by DM minimisation methods.

The constraints of idempotency and normalisation are considered in sections 3 and

4 respectively, and the scheme currently implemented in ONETEP is described in

section 5.

2. Density-matrix minimisation

The single-particle DM is chosen as the central variable in many O(N) methods because

it provides a complete description of the fictitious Kohn-Sham system and demonstrates

the property of nearsightedness explicitly. In the position representation, the DM

ρ(r, r′) decays as the separation of its arguments |r − r′| increases [22, 23]. Since a

ground-state DM is always separable [24], this form is adopted generally:

ρ(r, r′) =
∑

αβ

φα(r)Kαβφ∗β(r′). (1)

The {φα(r)} are a set of overlapping non-orthogonal orbitals [25] that are typically

centred on atoms. These orbitals are often assumed to be real since the Γ-point

is sufficient to sample the Brillouin zone of the large systems appropriate for O(N)

methods. Spin is not considered explicitly here. The overlap matrix S for these orbitals

may be defined by its matrix elements Sαβ = 〈φα|φβ〉 and the set of dual orbitals{
φα(r) =

∑
β S

αβφβ(r)
}

defined by 〈φα|φβ〉 = δα
β may be generated where Sαβ is a

matrix element of the overlap matrix for the duals which is simply S−1. Kαβ is a matrix

element of the density kernel K, which is the representation of the DM in terms of the

duals.

Linear scaling is obtained by enforcing nearsightedness: the orbitals must be

localised and the density kernel must be sparse. Following [26], the orbitals in ONETEP

are truncated beyond a given radius (typically around 3.5 Å) and a longer independent

cutoff is applied to the density kernel. Unique to ONETEP is the optimisation of the
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local orbitals (known as non-orthogonal generalised Wannier functions [27]) in terms

of a psinc basis set [28] equivalent to (and hence as accurate as) a set of plane waves,

in which the “FFT box” technique [29] is used to retain linear scaling even when fast

Fourier transforms (FFTs) are employed.

Density-matrix minimisation methods proceed by minimising an energy functional

of the DM with respect to the local orbitals and the density kernel, subject to the

appropriate constraints. This article concerns the optimisation of the density kernel so

that from now on the local orbitals are assumed to be constant. What follows could

therefore be equally applied to first-principles tight-binding [30, 31].

In order to find the ground state, three constraints must be satisfied during the

minimisation: compatibility, that the DM commute with the Hamiltonian [ρ,H] = 0;

normalisation, that the DM correspond to the correct number of electrons tr(ρ) = Ne;

and idempotency, that powers of the DM are the same ρ2 = ρ. It is the third, non-linear

constraint of idempotency that is most difficult to enforce, and which is considered first.

3. Idempotency

In terms of the Kohn-Sham orbitals {ψn(r)} (with eigenvalues {εn}) and their

occupancies {fn} the ground-state DM takes the diagonal form (c.f. (1))

ρ(r, r′) =
∑
n

fnψn(r)ψ∗n(r′). (2)

From this form, idempotency is seen to correspond to the double constraint that the

Kohn-Sham orbitals must be orthonormal 〈ψn|ψm〉 = δnm and the occupancies must

equal zero or unity. For the ground-state DM, states below the Fermi level µ (εn < µ)

must be occupied (fn = 1) and states above the Fermi level (εn > µ) unoccupied

(fn = 0). Hence idempotency enforces the Pauli exclusion principle and together

with energy minimisation applies the Aufbau principle. It is also noteworthy that

idempotency derives from the orthonormality constraint that is the cause of the O(N3)

scaling of traditional methods. Dealing with this awkward non-linear constraint may

therefore be viewed as the price to be paid for avoiding orbital orthonormality.

3.1. Penalty functionals

The vast majority of methods proposed in the literature for imposing idempotency find

their origin in the penalty functional first proposed by McWeeny [24],

P [ρ] = tr
[(
ρ2 − ρ

)2
]

=
∑
n

(
f 2

n − fn

)2
, (3)

and illustrated in figure 1(a). It is clearly positive semi-definite, vanishing if and only if

the DM is idempotent. Another attractive feature of this penalty functional is that the

Hessian matrix of second derivatives (evaluated at idempotency) is the identity. Apart

from being quartic rather than quadratic, this functional could not be easier to minimise.

The method of steepest descents is already optimal: more sophisticated methods (e.g.

conjugate gradients) and preconditioning schemes are unnecessary.
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Figure 1. Penalty functionals for idempotency proposed by (a) McWeeny and (b)
Kohn shown as a function of a single orbital occupancy fn, all others being fixed at
either zero or unity.

It might be thought that such a penalty functional could be used to enforce

idempotency simply by minimising a generalised energy functional Q[ρ] = E[ρ] +αP [ρ]

where E is the energy functional to be minimised (this might be the energy of the non-

interacting Kohn-Sham system tr(ρH) or the energy of the real interacting electronic

system if the minimisation is carried out self-consistently as in ONETEP) and α is

an energy parameter used to control the strength of the penalty functional. Figure 2

illustrates how such a functional might vary as the occupancy of a single occupied orbital

is varied. However since the slope of the energy at fn = 1 is given by the Kohn-Sham

eigenvalue εn [32] (if the Kohn-Sham non-interacting energy is being minimised then

the dashed curve in figure 2 would be a straight line), then the minimum of the total

functional Q cannot occur at fn = 1 whatever the value of α, so that this scheme can

only impose idempotency approximately at best.
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Figure 2. Variation with a single orbital occupancy (the rest being zero or unity)
of the total energy E with (solid line) and without (dashed line) the addition of the
McWeeny penalty functional P to enforce idempotency approximately. The positions
of local minima of the total functional are indicated by arrows.

To circumvent this problem, Kohn [3] proposed to use the square root of P as

the penalty functional (see figure 1(b)) and thus to minimise Q′[ρ] = E[ρ] + α
√
P [ρ].

As can be seen in figure 3, for sufficiently large α greater than some critical value

αc (that depends on the Kohn-Sham eigenvalues {εn}) the total functional takes its
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minimum value for an idempotent DM. However, Kohn’s functional is not differentiable

at the desired ground-state minimum, making it wholly unsuitable for any practical

minimisation scheme [33].
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Figure 3. Variation with a single orbital occupancy (the rest being zero or unity)
of the total energy E with (solid line) and without (dashed line) the addition of the
Kohn penalty functional

√
P to enforce idempotency for three values of the energy

parameter α: (a) α < αc, (b) α = αc and (c) α > αc.

Another objection to the use of penalty functionals might be the existence of

multiple local minima. However the normalisation constraint eliminates most of these,

and energy minimisation drives the DM towards the desired ground-state minimum so

that this is never a problem in practice if the DM is suitably prepared initially. In

principle, optimisation of the local orbitals provides a complete solution to the problem

since it rotates the representation of the DM and can therefore convert a false local

minimum into the global ground-state minimum.

Returning to the functional Q[ρ] = E[ρ] + αP [ρ], it can be shown that the error

δfn in an orbital occupancy (i.e. its deviation from zero or unity) is given by

δfn ≈ −εn − µ

α
. (4)

The minimisation of this functional is robust and straightforward and compatibility is

guaranteed at its minimum. The error in the occupancies can be reduced by increasing

the parameter α, and the energy obtained at the minimum approaches the true ground-

state energy from below with an error that also scales as 1/α, as shown in figure 4.

However, since the functional Q is differentiable at its minimum, a correction based upon

a Taylor expansion can be made so that the total energy may be correctly calculated

even when relatively small values of α are employed [34].

3.2. Purification

McWeeny [24] proved that steepest descents minimisation of P close to idempotency

(where the step length may be fixed to 1
2
) results in the so-called purification

transformation for iteratively improving a trial DM ρ0 towards idempotency:

ρk+1 = 3ρ2
k − 2ρ3

k. (5)
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Figure 4. Variation of the minimised total energy E (◦ ), total functional Q = E+αP

(♦) and corrected energy (ut) as a function of the parameter α for crystalline silicon.

This iterative procedure, illustrated in figure 5, converges if the initial occupancies lie

in the interval
(

1−√5
2
, 1+

√
5

2

)
. However tighter bounds are desirable: if the occupancies

lie in
[
−1

2
, 3

2

]
then the purified DM will be “weakly” idempotent, i.e. its occupancies

will lie in [0, 1]. However this still allows the possibility, shown in figure 5(c), that the

occupancy could “flip” from unoccupied to occupied or vice versa, which might provoke

instabilities or result in local minima during the minimisation procedure. This can be

avoided by ensuring that the occupancies all remain within the interval
(

1−√3
2
, 1+

√
3

2

)
.

In ONETEP the extremal occupancies are monitored to enforce this.
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Figure 5. Illustration of the purification transformation in terms of orbital
occupancies for three cases: (a) the initial occupancy 2

5 converges to zero; (b) the
initial occupancy 6

5 converges to unity; (c) the initial occupancy − 2
5 converges to

unity.

3.2.1. Adaptive purification The occupancies {fn} are the eigenvalues of the density

kernel K that satisfy the generalised eigenvalue equation Kxn = fnS
−1xn. The

corresponding eigenvectors {xn}, which relate the Kohn-Sham orbitals {ψn} to the

local orbitals {φα}, are dense irrespective of the sparsity of K. Neverthless, a small

fixed number of eigenvalue-eigenvector pairs may still be found in O(N) operations
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using iterative methods. The extremal occupancies can be found by extremising the

generalised Rayleigh quotient λ(x) = x†Kx/
(
x†S−1x

)
, which is far more accurate than

Gershgorin estimates. In fact, the method is implemented using the equivalent function

λ(y) = y†SKSy/
(
y†Sy

)
that avoids the use of S−1 (yn = S−1xn relates the {ψn} to

the duals {φα}).
Should the extremal occupancies lie outside the desired interval, then “adaptive”

purification is used to bring them back inside. This simply involves steepest descents

minimisation of P where the optimal step length is calculated explicitly (rather than

fixed to 1
2
) in order to avoid instabilities. This minimisation procedure converges rapidly

due to the properties of P mentioned above and is more efficient than generalised

purification transformations [35, 36, 37].

3.2.2. Canonical purification The canonical purification method [38] is a non-self-

consistent method for determined the ground-state DM of a fixed Hamiltonian. The

eigenvalues of the Hamiltonian are inverted, shifted and scaled so that they lie in the

interval [0, 1] i.e. εn → 1
2
(1 + (µ− εn)/εmax) where εmax = max ({|εn − µ|}). The

extremal eigenvalues of the Hamiltonian matrix H in the representation of the local

orbitals {φα} can be found by extremising the quotient ζ(y) = y†Hy/
(
y†Sy

)
. The

purification transformation (5) is then repeatedly applied until the Kohn-Sham energy

tr(KH) converges. In the absence of kernel truncation compatibility is guaranteed by

construction. When truncation is applied, matrix products can only be approximately

evaluated so that the Kohn-Sham energy eventually starts to increase, and the algorithm

is terminated at this point. This method is used in ONETEP to generate the initial

guess for the density kernel. A modified version that allows greater flexibility in the

choice of purification transformation has also been developed [39].

3.3. Li-Nunes-Vanderbilt method

By far the most widespread DM minimisation method is that attributed to Li, Nunes and

Vanderbilt (LNV) [40, 41] and reported simultaneously by Daw [42]. The purification

transformation is used to define the DM ρ in terms of an auxiliary matrix σ as

ρ = 3σ2 − 2σ3 where σ is defined by:

σ(r, r′) =
∑

αβ

φα(r)Lαβφ∗β(r′) (6)

and Lαβ is a matrix element of the auxiliary kernel L which is related to the density

kernel by K = 3LSL− 2LSLSL.

Minimising the total energy E[ρ] with respect to σ by optimising the matrix

elements of the auxiliary kernel L naturally drives the DM to idempotency. As long as

the eigenvalues of L remain within the interval
[
−1

2
, 3

2

]
, then the purified DM ρ will be

weakly idempotent and a variational estimate of the ground-state energy is obtained.

Moreover, because the energy functional is a cubic functional of L the method does

not suffer from multiple minima. However this cubic dependence also means that the
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method is potentially unstable should any of the eigenvalues of L stray outside the

range over which the purification transformation converges. A number of variants of

the original LNV method have been proposed [43, 44].

4. Normalisation constraint

All of the above methods for imposing the idempotency constraint need to be combined

with a method for enforcing normalisation. While this linear constraint is rather simpler

to deal with, the manner in which this is done may affect the overall stability of the

method. A Lagrange multiplier (the chemical potential µ) may be employed to ensure

that the minimum of the functional used corresponds to the correct number of electrons.

This corresponds to minimising the grand potential Ω = E−µN rather than the energy.

The value of the chemical potential may vary during the calculation, and may not always

be straightforward to determine.

There are three main approaches that have been taken to imposing normalisation

within the LNV method. The first is to constrain the purified electron number

tr(ρ) = tr(KS) = tr(3LSLS − 2LSLSLS) which is a cubic function of the auxiliary

kernel L. Since the chemical potential is not easily determined, this approach involves

projecting search directions to be orthogonal to the gradient of the purified electron

number with respect to L to ensure that the purified electron number is fixed to first

order. When a trial step is taken, L must be returned to the correct number of electrons

by moving L along the electron number gradient [26, 45].

The second approach is to constrain the unpurified electron number tr(σ) = tr(LS)

[43]. Since this quantity is linear in L the chemical potential is straightforwardly

determined. Choosing the correct chemical potential corresponds to projecting the

search direction to be orthogonal to the unpurified electron number gradient, but since

the constraint is linear no correction needs to be applied after changing L.

The third approach is to generate a normalised and purified DM by construction,

by rescaling i.e. modifying the purification transformation to

ρ = Ne
3σ2 − 2σ3

tr (3σ2 − 2σ3)
. (7)

Although this is no longer a cubic dependence, and might therefore reintroduce multiple

minima, in practice this has not been observed. The extra terms in the denominator

generate terms in the search direction that automatically project out the electron

number gradient, and effectively determine the chemical potential. Any correction to

the electron number (only necessary when the local orbitals are optimised) is carried

out by rescaling L appropriately.

4.1. Effect of truncation

Since O(N) is only achieved when the auxiliary and density kernels are truncated

according to some spatial cutoff, it is vital to assess the effect of this truncation, which
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can be dramatic. In ONETEP, imposing the normalisation constraint via the unpurified

electron number has proved unstable for periodic systems, in which the purified and

unpurified electron numbers can differ by a large amount. However it should be noted

that this approach was proposed as part of a method that takes a rather different

approach to truncation [43]. Instead of applying fixed sparsity patterns via spatial

cutoffs on the local orbitals and kernels, thresholding is used to apply truncation via

upper bounds on the values of matrix elements, which is necessary when the local

orbitals are expanded in a Gaussian basis set. Within the regime of tight thresholds

this approach to normalisation may well be much more successful.

Truncation can also have a marked effect on normalisation imposed using the

gradient of the purified electron number. Imposing a finite range on the density kernel is

qualitatively similar to truncating a Fermi operator expansion [12, 13] or introducing a

finite electronic temperature, in that while the occupancies remain clustered about zero

and unity they are smeared out. This applies particularly to states close to the Fermi

level. The purified electron number gradient 6σ(1−σ) is shown in figure 6 and it peaks

markedly around the chemical potential. This means that the weight of the projection

or correction can fall on a small number of states close to the Fermi level. Even a small

change in the total electron number may require significant changes in the occupancies

of these few states, and may cause them to be pushed outside the range of stability of

the purification transformation. For this reason the rescaling approach was derived and

implemented in ONETEP and does appear to confer stability upon the method.
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Figure 6. Schematic illustration of the purified electron number gradient as a function
of (a) orbital occupancy and (b) Kohn-Sham eigenvalue.

4.2. Locating the chemical potential

A method for determining the chemical potential µ is desirable for a number of the

methods outlined above e.g. canonical purification and normalisation within the LNV

method. It is possible to take an empirical approach by running a number of simulations

with different values of µ until the correct electron number is obtained at convergence,
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but this involves a significant amount of wasted effort. The difficulty stems from the

fact that in general the chemical potential lies between interior rather than extremal

eigenvalues of the Kohn-Sham Hamiltonian. The method of extremising a Rayleigh

quotient cannot therefore be applied directly.

The folded spectrum method [46, 47, 48] has been used successfully to find the

interior eigenvalues λ of a given matrix A that lie closest to a given reference value

λref . The eigenvalue spectrum of the matrix A is “folded” up into the positive semi-

definite spectrum of the matrix (A− λref)
2. The smallest eigenvalues of the folded

matrix correspond to the eigenvalues of A closest to λref . The problem of locating

interior eigenvalues may therefore be converted into an extremal eigenvalue problem

(albeit at the cost of some loss of efficiency due to the increase in condition number that

the folding step produces). This method has been applied to the problem of finding

the eigenvalues of a Hamiltonian closest to a given reference energy (usually the Fermi

level).

When the density kernel is truncated, its eigenvalues (the orbital occupancies)

closest to 1
2

belong to those states nearest the chemical potential. These may be found

by minimising the Rayleigh quotient η(y) = y†S
(
KS− 1

2

)2
y/

(
y†Sy

)
with respect to

the dense vector y. The corresponding Kohn-Sham eigenvalues can then be accurately

estimated by evaluating ζ(y) = y†Hy/
(
y†Sy

)
(this estimation becomes exact as the

calculation converges since compatibility implies that K and H may be diagonalised

simultaneously). This method may therefore be used to locate the energies of the states

immediately above ε+ and below ε− the chemical potential i.e. the LUMO and HOMO

in molecular systems or the conduction band minimum and valence band maximum in

extended systems. The chemical potential can therefore be estimated as µ = 1
2
(ε++ε−).

When updating rather than initially locating the chemical potential, convergence may

be accelerated by seeking the occupancies closest to those found during the previous

iteration rather than 1
2
.

In the absence of truncation this method will not succeed since the orbital

occupancies will all be zero or unity. However since the kernel is then dense linear

scaling cannot be achieved and the O(N3) cost of diagonalising H directly will not add

significantly to the cost of the calculation.

This scheme may be used to find and update the chemical potential needed by

O(N) schemes such as the LNV method or canonical purification. In addition it may

be used to analyse the electronic structure of a system once the ground state has been

found e.g. to estimate a reference energy in the band gap prior to a folded spectrum

calculation of the states closest to the Fermi level.

5. Implementation in ONETEP

In this section further computational details of the methods implemented in the

ONETEP code are given, along with an outline of how these methods are combined in

the kernel optimisation part of the code. Further details of the parallel implementation
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[49] and examples of its applications to a variety of systems can be found elsewhere

[50, 51, 52].

5.1. Non-orthogonality

Throughout this article a distinction has been made between quantites that are

covariant, such as the local orbitals {φα}, overlap Sαβ and Hamiltonian Hαβ matrix

elements (all with Greek subscripts), and those that are contravariant, such as the dual

orbitals {φα} and the inverse overlap matrix elements Sαβ (all with Greek superscripts).

This is necessary because of the non-orthogonality of the local orbitals [53, 54].

In particular, when calculating search directions from gradients of functionals, it is

necessary to use the metric tensors (the overlap matrix and its inverse) to convert

between covariant gradients and contravariant search directions. For example, the

gradient of the Kohn-Sham energy E = tr(KH) with respect to a matrix element

of the contravariant density kernel Kαβ is a covariant quantity ∂E/∂Kαβ = Hβα. The

appropriate search direction is the contravariant quantity obtained by “raising” both

indices of Hβα using the metric tensor Sαβ and may thus be written S−1HS−1. This

requires the inversion of the overlap matrix, which may be achieved using Hotelling’s

method [55], and results in a considerable improvement in the convergence of the

method [56]. An alternative approach [44] is to transform the problem to an orthogonal

representation by directly calculating the sparse inverse Cholesky factor of S [57, 58].

5.2. Overall scheme

The combination of methods implemented in ONETEP is as follows:

(i) the local orbitals {φα} are initially constructed by truncating pseudoatomic or

Slater-type contracted Gaussian atomic orbitals;

(ii) the initial charge density is constructed by superposing atomic charge densities,

from which the initial Hamiltonian in the representation of the local orbitals can

be calculated;

(iii) the initial (non-self-consistent) density kernel is obtained using canonical

purification [38];

(iv) this initial density kernel is then refined (self-consistently) using the approximate

penalty functional method [34];

(v) the density kernel is further optimised using one of the variants of the LNV

method described in section 3.3. During this process the extremal occupancies

are monitored and adaptive purification is applied if necessary to ensure stability;

(vi) once the density kernel has been converged to the desired tolerance the local orbitals

are updated, and the kernel optimisation is repeated from step (v). The algorithm

terminates when the energy is converged with respect to the density kernel and the

local orbitals.
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The density kernel optimisation in steps (iv) and (v) involves direct minimisation of the

total energy of the real system of interacting electrons. No density or potential mixing

is employed and the method is variational by construction [59].

A key feature is the combination of different methods to ensure that the algorithm

is stable. A combination of the LNV method and purification has been proposed before

[60] but the refinements of monitoring the occupancies so that additional purification

steps are taken only when necessary, and the use of adaptive purification to ensure

stability make the ONETEP approach particularly robust without any loss of efficiency.

6. Conclusions

An overview of the variety of O(N) methods for optimising the density kernel within the

representation of a fixed set of local orbitals has been given. The ONETEP code uses

a combination of these methods to ensure robust and efficient minimisation of the total

energy with respect to the density kernel. The use of generalised Rayleigh quotients to

monitor extremal occupancies and, in conjunction with the folded spectrum method, to

locate the chemical potential, is a key tool in the successful application of these methods.
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