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We present a new method for the calculation of ground-state total energies within density-functional
theory, based upon the single-particle density-matrix formulation, which requires a computational

effort which scales only linearly with system-size.

The difficult idempotency constraint is imposed

approximately using a penalty-functional constructed to allow efficient minimization. The resulting
error in the total energy due to the violation of idempotency is removed by an analytic correction.
The results for a system comprising 216 atoms of crystalline silicon are compared with those from a
standard plane-wave code. Linear scaling to 512 atoms is also demonstrated on a workstation.

Within density-functional theory (DFT), the complex-
ity of the problem of calculating the ground-state energy
of the inhomogeneous electron gas in an external potential
[1] scales linearly with system-size N (i.e. the number of
electrons). However, ‘traditional’ methods based upon the
Kohn-Sham (KS) formulation of DFT [2] require a com-
putational effort which scales asymptotically as N3, either
because of the cost of diagonalizing the Hamiltonian, or as
a result of the orthogonality requirement for the extended
KS single-particle wave-functions. This O(N?) scaling re-
stricts the size of systems which can currently be treated.
Much interest has therefore been shown in using the single-
particle density-matrix (DM) to calculate the total energy
[3]. Since the DM is short-ranged in real-space [4] and
free from orthogonality constraints, it provides the basis
of a linear-scaling method for KS-DFT [5-7] (see [8] for a
review of some of these methods). However, most linear-
scaling schemes have so far been applied only in the con-
text of tight-binding or restricted basis-set calculations. In
contrast, the method presented here has been applied to
fully self-consistent DFT calculations with an arbitrarily
complete basis-set, a task so far attempted by only one
other group [6].

In terms of the KS wave-functions {¢,;} and occupancies
{fo,i}, the ground-state DM po(r,r’) is

po(r,r') = Z fo,itpi(r); (x') (1)

where the occupancies equal zero or unity for wave-func-
tions with KS eigenvalues above or below the chemical
potential respectively. Defining the energy functional by

Elp] = - / dr’ [pr(r,r')]r:r, + Epxe[n]

+ / dr Vet (r)n(r), (2)

where Epye[n] is the sum of the Hartree and exchange-
correlation energies which depend only on the electronic
density n(r) = 2p(r,r) (the factor of two arising from spin
degeneracy), and Ve is the external potential arising from
the ions. The ground-state energy is found by minimizing
this functional with respect to all Hermitian DMs satisfy-
ing

2/dr p(r,r) = N, (3)

and the idempotency condition

o) = [deproper) = pler). @

This can be achieved in O(N) operations by exploiting
the short-ranged nature of the DM and truncating it be-
yond some spatial cut-off ¢y i.e. imposing p(r,r') = 0 for
v — | > reut.

The idempotency condition is required to ensure that
the occupancies are all zero or unity. It is difficult to
enforce since it is a non-linear constraint. One approach
has been to use a purifying transformation [9] to drive the
DM towards idempotency during minimization [3,6]. The
approach most closely related to that introduced in this
work is due to Kohn who, in a recent Letter [10], added
a penalty-functional to the KS energy functional so that
the minimum value of the total functional is achieved for
the idempotent ground-state DM pg. In terms of a trial
Hermitian DM p and its eigenvalues { f;}, Kohn’s penalty-
functional is

1
2

Plp] = {/ dr [p*(1 - p)Z]rf—r} [Z fi - fi)Q] : :
(5)

The square-root is required to force the total functional to
take its minimum value at the ground-state, because the
energy is not variational with respect to changes in the oc-
cupancies. However, the branch point introduced means
that the gradient is undefined at the ground-state and the
functional cannot be minimized using standard techniques
such as the conjugate gradients algorithm, since informa-
tion from local gradients cannot be used to build up a
picture of the global behaviour of the total functional [12].

In this Letter, we introduce a generalized functional @ [p]
defined by

Qlpl = Elp] + aP?[p]. (6)

The Taylor series for this functional in terms of the occu-
pancies is well-defined at all points, so that it may be min-
imized efficiently. Although the total functional @ may



possess multiple minima for certain values of «, there is
only one minimum where the normalization constraint (3)
is also satisfied [11], and since the search over trial DMs
may be straightforwardly constrained to normalized DMs,
multiple minima do not cause problems in practice.
Although the penalty-functional P? will prevent ‘run-
away’ solutions (such as macroscopic occupation of the
low-energy bands at the expense of negatively filling higher
bands) so that the minimization process is stable (which is
not guaranteed by other schemes), the DM p which min-
imizes the functional will not be exactly idempotent. In
general, the occupancies {f;} corresponding to occupied
bands will exceed unity, and those corresponding to un-
occupied bands will be negative. We estimate the errors
in the occupancies {df,} defined by f; = fo: + df; in the
following manner: since the functional @ is minimized by
p, it is a minimum with respect to all changes in the occu-
pancies which maintain the normalization constraint (3),
imposed by introducing a Lagrange multiplier A:

8% {Q[p] Y [2/dr p(r, 1) —N} }fih 0. (7)

Using Janak’s theorem [13] for the derivative of the energy
functional E in terms of the KS eigenvalues {;} at the
minimum of the functional, we obtain:

gt+afi(l-—fi)(1-2f;)-Ar=0 (8)
so assuming that the {df;} are small,
0fi =—(Ei—A)/a. (9)

Application of the normalization constraint (3) requires
> ;0f; =0 from which A = 23,&;/N is obtained. The
variance of the occupancy errors is related to the vari-
ance of the energy eigenvalues, scaled by the parameter
a. As a is increased, the errors in the eigenvalues at the
minimum decrease as §f, o« a~'. For small deviations
from idempotency, the penalty-functional P? ~ 3", 6f? S0
that the penalty term aP? also decreases as o', and the
energy approaches the true ground-state energy. This be-
haviour is illustrated in Fig. 1 where the occupancy errors
are plotted for four bands as a function of . This a~! con-
vergence is unsatisfactory for practical applications, since
it requires large values of a to obtain accurate estimates
of the ground-state energy and at large values of a the
penalty term dominates the total functional and hinders
efficient minimization of the energy term. To overcome
this problem we present a method for obtaining accurate
values for the ground-state energy from the results of cal-
culations performed at much smaller values of a. At the
minimum of the total functional, f; = f;,

BQ[p]‘ _ o~ 9Bl
ofi |y, ofi |y,

This expression can be used to construct a first-order Tay-
lor expansion for the total energy with respect to the occu-
pancies. We can provide an estimate for the ground-state
energy Ey as

+2af;(1— f)(1 =2f). (10)
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FIG. 1. Variation of occupancy errors with a. Dotted lines
show the best fit to ' behaviour.

Ey = Elpo] = Elp] + QQZﬁ(l =) =2f)éf;. (11)

For occupied bands, 6 f; = fi — 1 whereas for unoccupied
bands 0 f; = f; so that

all

Eo~ Elp] — 20 fi(1— f;)*(1 - 2f3)

+20 Y L= 1)1 -25). (12)

The first term of the correction has been written as a sum
over all bands so that it can be expressed in terms of a
trace Tr[p(1 — p)2(1 — 2p)], which can always be evaluated
in O(N) operations. The second term only contributes
when unoccupied bands are included in the calculation,
which is not necessary for insulators. A single eigenvalue
of the (sparse) DM can always be obtained in O(N) oper-
ations and so it is possible to evaluate the correction for
a small number of unoccupied bands without spoiling the
O(N) scaling. Even so, since the correction is only ap-
plied when the minimum of the total functional has been
found, a single O(N?) step to obtain all of the eigenval-
ues of the DM is still an insignificant fraction of the total
computational effort. Importantly, this analytic correc-
tion also permits the calculation of forces consistent with
the corrected energy. Fig. 2 shows the total energy, the to-
tal functional and the corrected energy as a function of a.
Even at a = 50 eV, the corrected energy agrees with the
a — oo limits of both the total energy and total functional
to better than 10~* eV per atom.

The lowest-order term omitted from the Taylor expan-
sion involves the second derivative

1 0%Elp] _ o9&
2 0fi0f; fi=Ffi.fi=F; af; fi="Fi

which is known as the chemical hardness matrix in the
context of the construction of transferable pseudopoten-
tials [14]. This matrix is neither positive- nor negative-
definite, so that the corrected energy is neither an upper

(13)
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FIG. 2. Variation of the total energy, total functional and
corrected energy with . Dotted lines show the best fit to o'
behaviour.

nor a lower bound to the true ground-state energy. How-
ever, this error is much smaller than those arising from
the finite DM cut-off, so that in practice the corrected en-
ergy can be treated as a variational upper bound to the
ground-state energy.

In practical O(N) calculations, we cannot work directly
with the extended KS wave-functions and occupancies,
and instead the trial DM is written in terms of a sparse
matrix RY and a set of non-orthogonal functions {¢;} lo-
calized within spherical regions of radius rpeg:

p(r,x') = Z i (r) R 65 (x'). (14)

The sparsity of R is controlled by the parameter rg, forc-
ing elements of R corresponding to localized functions with
centres separated by more than rg to vanish. rys and rg
together determine r¢,¢. The localized functions are ex-
panded in some localized basis, and then the total func-
tional is minimized with respect to the expansion coeffi-
cients and the matrix elements R'.

The minimization is performed by two nested loops, the
inner with respect to R and the outer with respect to the
{¢;}. In terms of the Hamiltonian in the representation of
the {¢;}, Hi; = (¢;]H|¢;) and the overlap matrix S;; =
(¢il¢;), the gradient with respect to R is

In contrast to other orbital-based methods, the condition
number for this stage of the minimization is approximately
unity (since the curvature of the functional with respect
to variations of R is determined by the shape of P2 alone)
and hence the minimization is much more efficient [15].
By making the Léwdin transformation to a set of or-
thonormalized orbitals {¢; = ¢j5_;%} and defining the
density-matrix and Hamiltonian in this representation as
R = S*RS?* and H = S"3HS 3 respectively, then at
the constrained minimum defined by (7);

2587 |H + aR(1— R)(1—2R) —\| S* =0 (16)

ie. H+aR(1— R)(1 - 2R) — X = 0 so that the density-
matrix and the Hamiltonian commute and can therefore
be diagonalized simultaneously. (In terms of this repre-
sentation (14), A\ = 2Tr(S~'H)/N, although its value is
never required). The resulting eigenvalues obey (8).

The gradient with respect to the localized functions is

6Q[p]
6y (r)

=2{RA
+ a[RSR(1— SR)(1 — 253)]”} 6i(r).  (17)

When transformed to the common diagonal frame of the
density-matrix and Hamiltonian by some unitary transfor-
mation ; = ¢;Uj;, this gradient becomes
09 —of [Htafi( - £ 26)] ). (9

Sy 4T ajill —Ji —<ali ill)-

017 (r)
At the minimum of () with respect to both R and {¢;} we
thus have from (8):

0Q
07 (r)

=0=2/; [H +afi(1~ F)(1 - 20)] i(x)

= 2f; [ + (e = V)] wi(o). (19)

These are simply the Kohn-Sham equations, with eigen-
values shifted by the Lagrange multiplier A associated
with the normalization constraint. Thus, in addition to
kinetic-energy preconditioning [16], occupancy precondi-
tioning [17] can be applied to improve the convergence.

This scheme has been implemented and applied to the
test case of 216 atoms of crystalline silicon. The localized
functions were expanded in a spherical-wave basis-set [18]
using an energy cut-off of 200 eV and angular momentum
components up to £ = 2. In Fig. 3 the convergence of the
corrected energy with respect to 7., and rg is plotted. As
these spatial cut-offs are increased, the variational freedom
of the DM is increased, so that the energy converges from
above.
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FIG. 3. Convergence of the corrected energy with respect to
(left) the localization region radius rreg and (right) the cut-off
rr applied to the matrix R.

Table I shows values for the equilibrium lattice pa-
rameter a and bulk modulus B obtained using values of



Treg = 3.1 A, rg = 6.0A and a = 100 eV. Experimental
values and results of the CASTEP plane-wave code [19], us-
ing the same pseudopotential [20] and equivalent Brillouin
zone sampling are also shown. The calculations of a agree
to better than 1% and those of B (which is more sensitive
to the data) to within 3%.

TABLE I. Comparison of calculated and experimental data
for crystalline silicon.

Calculation Linear-scaling CASTEP Experiment
a/A 5.428 5.390 5.430
B / GPa 104.3 101.7 100.0

Finally, in Fig. 4 the computational effort for a single it-
eration of the outer loop for the same values of 7es, 7r and
a is plotted against system-size to demonstrate the linear
scaling of the method. Since fewer matrix multiplications
are required, each iteration of this method is cheaper than
the purifying method, also plotted (both methods require
a similar number of iterations to converge the energy to a
given accuracy). The number of iterations required to con-
verge these linear-scaling calculations is currently an order
of magnitude larger (about 200 for these calculations on
silicon) than is the case for traditional cubic-scaling all-
bands methods [21], but since the condition number of
the functional depends only upon properties of the system
being modelled, the number of iterations required does
not increase with system-size. Since the method achieves
linear scaling by partitioning real-space into overlapping
regions, excellent scaling with respect to the number of
processors is expected for implementations on massively-
parallel computers [22].
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FIG. 4. Scaling of computational effort with system-size for
this method compared with a method based on the purifying
transformation (DEC 500au workstation).

In conclusion, we have presented a new DM-based
linear-scaling method for DFT, in which the approxi-
mate imposition of idempotency, enforced by means of a
penalty-functional, permits the use of efficient minimiza-
tion methods, and from which accurate estimates of the

energy derived from the true idempotent ground-state DM
can be obtained by using a correction derived from the
form of the penalty-functional.
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