
Corrected penalty-functional method for linear-scaling calculations withindensity-functional theoryP. D. Haynes and M. C. PayneTheory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom(October 6, 1998)We present a new method for the calculation of ground-state total energies within density-functionaltheory, based upon the single-particle density-matrix formulation, which requires a computationale�ort which scales only linearly with system-size. The di�cult idempotency constraint is imposedapproximately using a penalty-functional constructed to allow e�cient minimization. The resultingerror in the total energy due to the violation of idempotency is removed by an analytic correction.The results for a system comprising 216 atoms of crystalline silicon are compared with those from astandard plane-wave code. Linear scaling to 512 atoms is also demonstrated on a workstation.Within density-functional theory (DFT), the complex-ity of the problem of calculating the ground-state energyof the inhomogeneous electron gas in an external potential[1] scales linearly with system-size N (i.e. the number ofelectrons). However, `traditional' methods based upon theKohn-Sham (KS) formulation of DFT [2] require a com-putational e�ort which scales asymptotically as N3, eitherbecause of the cost of diagonalizing the Hamiltonian, or asa result of the orthogonality requirement for the extendedKS single-particle wave-functions. This O(N3) scaling re-stricts the size of systems which can currently be treated.Much interest has therefore been shown in using the single-particle density-matrix (DM) to calculate the total energy[3]. Since the DM is short-ranged in real-space [4] andfree from orthogonality constraints, it provides the basisof a linear-scaling method for KS-DFT [5{7] (see [8] for areview of some of these methods). However, most linear-scaling schemes have so far been applied only in the con-text of tight-binding or restricted basis-set calculations. Incontrast, the method presented here has been applied tofully self-consistent DFT calculations with an arbitrarilycomplete basis-set, a task so far attempted by only oneother group [6].In terms of the KS wave-functions f ig and occupanciesff0;ig, the ground-state DM �0(r; r0) is�0(r; r0) =Xi f0;i i(r) �i (r0) (1)where the occupancies equal zero or unity for wave-func-tions with KS eigenvalues above or below the chemicalpotential respectively. De�ning the energy functional byE[�] = � Z dr0 �r2r�(r; r0)�r=r0 +EHxc[n]+ Z dr Vext(r)n(r); (2)where EHxc[n] is the sum of the Hartree and exchange-correlation energies which depend only on the electronicdensity n(r) = 2�(r; r) (the factor of two arising from spindegeneracy), and Vext is the external potential arising fromthe ions. The ground-state energy is found by minimizingthis functional with respect to all Hermitian DMs satisfy-ing

2 Z dr �(r; r) = N; (3)and the idempotency condition�2(r; r0) = Z d�r �(r; �r)�(�r; r0) = �(r; r0): (4)This can be achieved in O(N) operations by exploitingthe short-ranged nature of the DM and truncating it be-yond some spatial cut-o� rcut i.e. imposing �(r; r0) = 0 forjr� r0j > rcut.The idempotency condition is required to ensure thatthe occupancies are all zero or unity. It is di�cult toenforce since it is a non-linear constraint. One approachhas been to use a purifying transformation [9] to drive theDM towards idempotency during minimization [3,6]. Theapproach most closely related to that introduced in thiswork is due to Kohn who, in a recent Letter [10], addeda penalty-functional to the KS energy functional so thatthe minimum value of the total functional is achieved forthe idempotent ground-state DM �0. In terms of a trialHermitian DM � and its eigenvalues ffig, Kohn's penalty-functional isP [�] = �Z dr ��2(1� �)2�r0=r� 12 = "Xi f2i (1� fi)2# 12 :(5)The square-root is required to force the total functional totake its minimum value at the ground-state, because theenergy is not variational with respect to changes in the oc-cupancies. However, the branch point introduced meansthat the gradient is unde�ned at the ground-state and thefunctional cannot be minimized using standard techniquessuch as the conjugate gradients algorithm, since informa-tion from local gradients cannot be used to build up apicture of the global behaviour of the total functional [12].In this Letter, we introduce a generalized functionalQ[�]de�ned by Q[�] = E[�] + �P 2[�]: (6)The Taylor series for this functional in terms of the occu-pancies is well-de�ned at all points, so that it may be min-imized e�ciently. Although the total functional Q may1



possess multiple minima for certain values of �, there isonly one minimum where the normalization constraint (3)is also satis�ed [11], and since the search over trial DMsmay be straightforwardly constrained to normalized DMs,multiple minima do not cause problems in practice.Although the penalty-functional P 2 will prevent `run-away' solutions (such as macroscopic occupation of thelow-energy bands at the expense of negatively �lling higherbands) so that the minimization process is stable (which isnot guaranteed by other schemes), the DM �� which min-imizes the functional will not be exactly idempotent. Ingeneral, the occupancies f �fig corresponding to occupiedbands will exceed unity, and those corresponding to un-occupied bands will be negative. We estimate the errorsin the occupancies f�f ig de�ned by �fi = f0;i + �f i in thefollowing manner: since the functional Q is minimized by��, it is a minimum with respect to all changes in the occu-pancies which maintain the normalization constraint (3),imposed by introducing a Lagrange multiplier �:@@fi �Q[�]� � �2 Z dr �(r; r) �N��fi= �fi = 0: (7)Using Janak's theorem [13] for the derivative of the energyfunctional E in terms of the KS eigenvalues f�"ig at theminimum of the functional, we obtain:�"i + � �fi �1� �fi� �1� 2 �fi�� � = 0 (8)so assuming that the f�fig are small,�f i = �(�"i � �)=�: (9)Application of the normalization constraint (3) requiresPi �f i = 0 from which � = 2Pi �"i=N is obtained. Thevariance of the occupancy errors is related to the vari-ance of the energy eigenvalues, scaled by the parameter�. As � is increased, the errors in the eigenvalues at theminimum decrease as �f i / ��1. For small deviationsfrom idempotency, the penalty-functional P 2 �Pi �f2i sothat the penalty term �P 2 also decreases as ��1, and theenergy approaches the true ground-state energy. This be-haviour is illustrated in Fig. 1 where the occupancy errorsare plotted for four bands as a function of �. This ��1 con-vergence is unsatisfactory for practical applications, sinceit requires large values of � to obtain accurate estimatesof the ground-state energy and at large values of � thepenalty term dominates the total functional and hinderse�cient minimization of the energy term. To overcomethis problem we present a method for obtaining accuratevalues for the ground-state energy from the results of cal-culations performed at much smaller values of �. At theminimum of the total functional, fi = �fi,@Q[�]@fi ���� �fi = 0 = @E[�]@fi ���� �fi + 2� �fi(1� �fi)(1� 2 �fi): (10)This expression can be used to construct a �rst-order Tay-lor expansion for the total energy with respect to the occu-pancies. We can provide an estimate for the ground-stateenergy E0 as
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FIG. 1. Variation of occupancy errors with �. Dotted linesshow the best �t to ��1 behaviour.E0 = E[�0] � E[��] + 2�Xi �fi(1� �fi)(1� 2 �fi)�f i: (11)For occupied bands, �f i = �fi � 1 whereas for unoccupiedbands �f i = �fi so thatE0 � E[��]� 2� allXi �fi(1� �fi)2(1� 2 �fi)+ 2� unoccXi �fi(1� �fi)(1� 2 �fi): (12)The �rst term of the correction has been written as a sumover all bands so that it can be expressed in terms of atrace Tr[��(1� ��)2(1� 2��)], which can always be evaluatedin O(N) operations. The second term only contributeswhen unoccupied bands are included in the calculation,which is not necessary for insulators. A single eigenvalueof the (sparse) DM can always be obtained in O(N) oper-ations and so it is possible to evaluate the correction fora small number of unoccupied bands without spoiling theO(N) scaling. Even so, since the correction is only ap-plied when the minimum of the total functional has beenfound, a single O(N2) step to obtain all of the eigenval-ues of the DM is still an insigni�cant fraction of the totalcomputational e�ort. Importantly, this analytic correc-tion also permits the calculation of forces consistent withthe corrected energy. Fig. 2 shows the total energy, the to-tal functional and the corrected energy as a function of �.Even at � = 50 eV, the corrected energy agrees with the�!1 limits of both the total energy and total functionalto better than 10�4 eV per atom.The lowest-order term omitted from the Taylor expan-sion involves the second derivative12 @2E[�]@fi@fj ����fi= �fi;fj= �fj = @�"i@fj ����fj= �fj (13)which is known as the chemical hardness matrix in thecontext of the construction of transferable pseudopoten-tials [14]. This matrix is neither positive- nor negative-de�nite, so that the corrected energy is neither an upper2
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FIG. 2. Variation of the total energy, total functional andcorrected energy with �. Dotted lines show the best �t to ��1behaviour.nor a lower bound to the true ground-state energy. How-ever, this error is much smaller than those arising fromthe �nite DM cut-o�, so that in practice the corrected en-ergy can be treated as a variational upper bound to theground-state energy.In practical O(N) calculations, we cannot work directlywith the extended KS wave-functions and occupancies,and instead the trial DM is written in terms of a sparsematrix Rij and a set of non-orthogonal functions f�ig lo-calized within spherical regions of radius rreg:�(r; r0) =Xij �i(r)Rij��j (r0): (14)The sparsity of R is controlled by the parameter rR, forc-ing elements ofR corresponding to localized functions withcentres separated by more than rR to vanish. rreg and rRtogether determine rcut. The localized functions are ex-panded in some localized basis, and then the total func-tional is minimized with respect to the expansion coe�-cients and the matrix elements Rij .The minimization is performed by two nested loops, theinner with respect to R and the outer with respect to thef�ig. In terms of the Hamiltonian in the representation ofthe f�ig, Hij = h�ijĤj�ji and the overlap matrix Sij =h�ij�ji, the gradient with respect to R is@Q[�]@Rij = 2Hji + 2� [SRS(1�RS)(1� 2RS)]ji : (15)In contrast to other orbital-based methods, the conditionnumber for this stage of the minimization is approximatelyunity (since the curvature of the functional with respectto variations of R is determined by the shape of P 2 alone)and hence the minimization is much more e�cient [15].By making the L�owdin transformation to a set of or-thonormalized orbitals f'i = �jS� 12ji g and de�ning thedensity-matrix and Hamiltonian in this representation as~R = S 12RS 12 and ~H = S� 12HS� 12 respectively, then atthe constrained minimum de�ned by (7);

2S 12 h ~H + � ~R(1� ~R)(1� 2 ~R)� �iS 12 = 0 (16)i.e. ~H + � ~R(1� ~R)(1 � 2 ~R) � � = 0 so that the density-matrix and the Hamiltonian commute and can thereforebe diagonalized simultaneously. (In terms of this repre-sentation (14), � = 2Tr(S�1H)=N , although its value isnever required). The resulting eigenvalues obey (8).The gradient with respect to the localized functions is�Q[�]���i (r) = 2nRijĤ+ � [RSR(1� SR)(1� 2SR)]ijo�j(r): (17)When transformed to the common diagonal frame of thedensity-matrix and Hamiltonian by some unitary transfor-mation  i = 'jUji, this gradient becomes�Q� �i (r) = 2fi hĤ + �fi(1� fi)(1� 2fi)i i(r): (18)At the minimum of Q with respect to both R and f�ig wethus have from (8):�Q� �i (r) = 0 = 2 �fi hĤ + � �fi(1� �fi)(1� 2 �fi)i i(r)= 2 �fi hĤ + (�"i � �)i i(r): (19)These are simply the Kohn-Sham equations, with eigen-values shifted by the Lagrange multiplier � associatedwith the normalization constraint. Thus, in addition tokinetic-energy preconditioning [16], occupancy precondi-tioning [17] can be applied to improve the convergence.This scheme has been implemented and applied to thetest case of 216 atoms of crystalline silicon. The localizedfunctions were expanded in a spherical-wave basis-set [18]using an energy cut-o� of 200 eV and angular momentumcomponents up to ` = 2. In Fig. 3 the convergence of thecorrected energy with respect to rreg and rR is plotted. Asthese spatial cut-o�s are increased, the variational freedomof the DM is increased, so that the energy converges fromabove.
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FIG. 3. Convergence of the corrected energy with respect to(left) the localization region radius rreg and (right) the cut-o�rR applied to the matrix R.Table I shows values for the equilibrium lattice pa-rameter a and bulk modulus B obtained using values of3



rreg = 3:1 �A, rR = 6:0�A and � = 100 eV. Experimentalvalues and results of the castep plane-wave code [19], us-ing the same pseudopotential [20] and equivalent Brillouinzone sampling are also shown. The calculations of a agreeto better than 1% and those of B (which is more sensitiveto the data) to within 3%.TABLE I. Comparison of calculated and experimental datafor crystalline silicon.Calculation Linear-scaling castep Experimenta / �A 5.428 5.390 5.430B / GPa 104.3 101.7 100.0Finally, in Fig. 4 the computational e�ort for a single it-eration of the outer loop for the same values of rreg, rR and� is plotted against system-size to demonstrate the linearscaling of the method. Since fewer matrix multiplicationsare required, each iteration of this method is cheaper thanthe purifying method, also plotted (both methods requirea similar number of iterations to converge the energy to agiven accuracy). The number of iterations required to con-verge these linear-scaling calculations is currently an orderof magnitude larger (about 200 for these calculations onsilicon) than is the case for traditional cubic-scaling all-bands methods [21], but since the condition number ofthe functional depends only upon properties of the systembeing modelled, the number of iterations required doesnot increase with system-size. Since the method achieveslinear scaling by partitioning real-space into overlappingregions, excellent scaling with respect to the number ofprocessors is expected for implementations on massively-parallel computers [22].
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FIG. 4. Scaling of computational e�ort with system-size forthis method compared with a method based on the purifyingtransformation (DEC 500au workstation).In conclusion, we have presented a new DM-basedlinear-scaling method for DFT, in which the approxi-mate imposition of idempotency, enforced by means of apenalty-functional, permits the use of e�cient minimiza-tion methods, and from which accurate estimates of the

energy derived from the true idempotent ground-state DMcan be obtained by using a correction derived from theform of the penalty-functional.We acknowledge useful discussions with I. D. White, andPDH acknowledges the support of an EPSRC studentship.This work is covered by British Patent Application No.9814931.3.
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