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In terms of a set of orthonormal orbitals f'ig and occupation numbers ffig,the DM � is written as �(r; r0) = Xi fi 'i(r)'�i (r0): (1)For the ground-state DM, the f'ig are eigenstates of the self-consistent Kohn-Sham Hamiltonian with eigenvalues f"ig and occupation numbers ffig equalto unity or zero for states below or above the chemical potential � respectively.The DM must be Hermitian and normalized (to correspond to a system of Neelectrons): N [�] = 2 Z dr �(r; r) = 2Xi fi = Ne; (2)where the factor of two arises from spin degeneracy. In addition, the ground-state DM must be idempotent:�2(r; r0) = Z dr00 �(r; r00)�(r00; r0) = �(r; r0): (3)The energy functional E[�] is de�ned byE[�] = � Z dr0 hr2r�(r; r0)ir=r0 + EHxc[n] + Z dr Vext(r)n(r); (4)where EHxc[n] is the sum of the Hartree and exchange-correlation energieswhich depend only on the electronic density n(r) = 2�(r; r) and Vext is theexternal potential arising from the ions. The ground-state energy can be foundby minimizing this functional with respect to all Hermitian, normalized andidempotent DMs. Without the idempotency constraint, the minimization isunstable with respect to unphysical DMs in which low-energy states are over-occupied (with more than two electrons each) and high-energy states are neg-atively occupied.Exploiting the short-ranged behaviour of the DM, i.e. that �(r; r0)! 0 expo-nentially [2] as jr� r0j ! 1, by imposing some spatial cut-o� rcut (such that�(r; r0) = 0 for jr� r0j > rcut) results in a linear-scaling method. The mostsigni�cant hurdle to overcome is the imposition of the idempotency constraint.This can be achieved implicitly using a purifying transformation [3] which hasbeen implemented in several tight-binding and DFT schemes [4].An alternative approach to imposing the idempotency constraint has beenproposed by Kohn [5], who suggested minimizing the functional ~Q de�ned by~Q[�;�; �] = ENI[�2]� �N [�2] + �P [�] (5)2



where ENI is the total energy of the non-interacting Kohn-Sham system, N isde�ned in (2), and the penalty-functional P isP [�] = �Z dr h�2(1� �)2ir0=r� 12 = "Xi f 2i (1� fi)2# 12 : (6)Kohn derived a variational principle for the functional ~Q which states thatfor values of � larger than some critical value, the minimum value of ~Q is anupper bound to the ground-state grand potential of the system.Rather than minimizing the non-interacting energy, as proposed by Kohn, wecan instead minimize the interacting energy self-consistently. Using the squareof the DM to calculate ENI in (5) has the advantage that it guarantees that thecharge density is positive-de�nite. However, in order to simplify the analysishere we consider the functional Q de�ned byQ[�;�; �] = E[�]� �N [�] + �P [�] (7)where the interacting energy E is de�ned by (4), N by (2) and P by (6). UsingJanak's theorem [6] the derivative of Q with respect to occupation numbers is@Q[�;�; �]@fi = 2("i � �) + �P [�]fi(1� fi)(1� 2fi): (8)For the case of idempotent DMs, for which P = 0, we obtain the special cases@Q[�;�; �]@fi �����fi=f0�;1�g = 2("i � �)� �; (9)since, in this case, all variations away from the idempotent ground-state DMcause Q to increase. We note that the �rst derivative of the functional isunde�ned for idempotent DMs. The ground-state idempotent DM will thusminimize Q if � exceeds some critical value �c for which a lower bound is�c > 2maxi j"i � �j : (10)This is illustrated schematically in Fig. 1 for the case of a single occupationnumber corresponding to a state above the chemical potential. For � > �c theminimum value of Q is obtained when fi = 0. This outlines the variationalprinciple established by Kohn, but we note that the functional Q is minimalonly in the sense that it takes its minimum value at the ground-state, but3
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Fig. 1. Schematic illustration of the variational principle: behaviour of the grandpotential (dotted) and total functional (full) for representative values of � when theoccupation number of a single state above the chemical potential is varied.not in the sense that its derivatives vanish at the ground-state, since they areunde�ned at that point.The penalty-functional P has a branch point at its minimum, due to thesquare-root form employed (6). However, this square-root is crucial to es-tablishing the variational principle. In Fig. 2, the e�ect of using an analyticpenalty-functional (the square of P ) is plotted and it is clear that the mini-mum now occurs for fi < 0 for all values of �. The total energy calculated inthis case will no longer be a variational upper bound to the ground-state en-ergy. We have recently introduced a method for obtaining accurate estimatesof the true ground-state energy may from such nearly-idempotent DMs, anddetails can be found elsewhere [7]. Nevertheless, the non-analytic form of thepenalty-functional (6) must be employed if we wish to obtain a variationalprinciple for the energy.
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fiFig. 2. Schematic illustration of the lack of a variational principle when an analyticpenalty-functional is used. For the case of unoccupied bands, as shown here, theminimum occurs for fi < 0.Several schemes exist for directly minimizing functions of many variables. Thesimplest of these is the method of steepest descents in which the gradient ofthe function is used as a search direction in the multidimensional space. Theminimum value of the function along this direction is found and the process4



iterated to convergence. In Fig. 3, the results of applying this method toan exactly quadratic function f(x; y) = x2 + 10y2 are plotted, starting fromthe point (5,1). Successive search directions are always orthogonal, and themethod is not guaranteed to �nd the minimum in a �nite number of steps. Themethod is clearly ine�cient, since all of the information from previous functionand gradient evaluations is ignored when calculating new search directions. Incontrast, the conjugate gradients method [8] uses this information to constructindependent search directions. Each successive step e�ectively eliminates onedimension of the space to be searched, so that the minimum is found in anumber of steps no greater than the dimensionality of the space. The resultsfor this method are plotted in Fig. 4 for the same quadratic function plotted inFig. 3. This method has been successfully implemented in traditional electronicstructure calculations [9].
Fig. 3. Results for the steepest descents method applied to a quadratic function(whose elliptic contours are plotted). The search directions are mutually orthogonal,and a large number of steps is required to �nd the minimum.
Fig. 4. The conjugate gradients method applied to the same quadratic functionplotted in Fig. 3. The minimum is found in two steps.However, the conjugate gradients method relies on the accuracy of a quadraticapproximation of the function around the minimum. As observed, the func-tional Q has a branch point at its minimum which arises from the square-root that appears in the penalty-functional, and is therefore non-analytic atthe minimum. No multidimensional Taylor expansion for the functional existsabout the minimum, and so the local information (functional values and gra-dients at points) used to construct the conjugate directions gives a misleadingpicture of the global behaviour of the functional. In Fig. 5 the results of a steep-est descents minimization of the function g(x; y) = qf(x; y) = px2 + 10y2 isplotted, and exactly the same sequence of points is generated as in Fig. 3.However, the results obtained using the conjugate gradients method, plottedin Fig. 6, are now worse than for steepest descents.5



Fig. 5. The steepest descents method applied to a function with a branch point atthe minimum (the square-root of the function plotted in Fig. 3). Exactly the samesequence of points is generated.
Fig. 6. The conjugate gradients method applied to the same function as plotted inFig. 5. This method is now less e�cient than steepest descents.In Figs. 5 and 6, the exact line minimum is found in each case. In practice,however, the position of the line minimum is usually estimated, by making aparabolic interpolation of the functional along the search direction using theinitial value and �rst derivative of the functional, and its value at a trial step.In this case, the line minimum estimate will also be wrong, further reducingthe e�ciency in both cases.These problems are not con�ned to the conjugate gradients method alone, butapply equally to any method which attempts to use gradients to build up anestimate of the Hessian of the functional e.g. the Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno algorithms [10]. The Car-Parrinello scheme [11] wouldalso fail in this case since the derivative of the penalty-functional would appearin the equations of motion for the molecular-dynamics Lagrangian. Simulatedannealing methods [12] such as the Metropolis algorithm [13] will successfullyminimize functions of this kind, since they do not use the gradients, but thenumber of iterations required in this case would increase with system-size asthe number of dimensions to be searched increased, thus spoiling the linearscaling of the method.We can attempt to �nd a set of conjugate directions for the non-quadraticfunctions encountered here. For a function f(x) with a quadratic minimum, aset of conjugate directions fdkg are de�ned byd1 = �rf(x0);dk+1 = �rf(xk) + 
kdk (k > 0) (11)6



where k labels the iteration and xk is the position of the line minimum alongthe search direction dk. Several expressions for 
k exist, all of which are equiv-alent for exactly quadratic functions, and one of these is
k = rf(xk) � rf(xk)rf(xk�1) � rf(xk�1) : (12)For the function g(x) = qf(x), the gradient rg(x) = [2g(x)]�1rf(x) so thatrede�ning 
k by 
k = g(xk)g(xk�1) rg(xk) � rg(xk)rg(xk�1) � rg(xk�1) (13)enables a set of conjugate directions to be obtained, which are parallel tothe directions obtained for f(x). For the example of the function plotted inFigs. 5 and 6, minimization using this new expression for 
k yields the sameresults as plotted in Fig. 4. Such a scheme would therefore enable the e�cientminimization of the penalty-functional P . However, for the functionalQ whichconsists of the sum of a functional with a quadratic minimum, E � �N , andthe penalty-functional P which has a branch point like g(x) above at theminimum, neither expression for 
k is suitable, and we are unable to de�nea set of conjugate directions which can be used to simultaneously minimizeboth types of function.When using the conjugate gradients method to minimize functions which arenot exactly quadratic in form, it is common practice to reset the conjugatedirections after a certain number of iterations by taking a steepest descent step.Fig. 7 shows the results for a two-dimensional function with the same genericform as Q, for di�erent numbers of iterations between steepest descent steps.As the number of successive conjugate gradients steps is increased, the methodbecomes less e�cient for the reasons discussed above. Since these results arefor a function of only two variables, the method succeeds in �nding the trueminimum. However, for functions of many variables, this is not the case and ingeneral the true minimum is not found, and the method appears to convergeto a value which is not the minimum. This trend can be seen in Fig. 6, inwhich the conjugate directions become orthogonal to the gradient. Therefore,the method fails not as a result of false minima, but because the minimizationbecomes so slow as to be indistinguishable from true convergence.In order to see whether such behaviour appears in a genuine DFT calcula-tion, we have implemented this scheme to perform total energy calculations,and have applied it to crystalline silicon. The density-matrix was expanded inseparable form in terms of a sparse Hermitian matrix and a set of localizedfunctions, as in other schemes [4], and the localized functions themselves were7
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Fig. 7. Results obtained using steepest descents (SD) and conjugate gradients (CGn)(reset after n iterations) to minimize a non-analytic function of the same form asthe total functional Q.centred on the ions and expanded in terms of a localized spherical-wave basis-set [14] using an energy cut-o� of 200 eV and angular momentum componentsup to ` = 2. No attempt was made to converge the calculation with respectto the density-matrix cut-o�. The variational principle proved by Kohn statesthat for � > �c, P = 0 at the minimum. In Fig. 8, we show the contributionof the penalty-functional �P to the total minimized functional Q. As � is in-creased, this contribution does not vanish above some critical value (estimatedfrom (10) and by Kohn's limit to be of the order of 50 eV for silicon) but ratherdecreases slowly. Also plotted in Fig. 8 is the corresponding root-mean-squareerror in the occupation numbers, which also decreases as � increases. Thus thetotal energy E will approach the true ground-state value, but no variationalprinciple can be invoked, since this only holds for P = 0 exactly.In conclusion, we have implemented a method based upon the variational prin-ciple derived by Kohn [5] and demonstrated a fundamental di�culty in usingthis method in a computational scheme which is due to the non-analyticityof the required penalty-functional. Calculations on crystalline silicon con�rmthe trends observed from considering simple model functions. We have shownthat the variational principle cannot be exploited in practice because the na-ture of the functional makes it unsuitable for use with current minimizationtechniques. Other schemes based upon the purifying transformation, or whichuse an analytic penalty-functional to approximately impose idempotency (andsubsequently correct for the error introduced due to the lack of idempotency)will therefore be more e�cient.We acknowledge helpful discussions with E. Sandr�e. PDH was supported byan EPSRC studentship. 8
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