
Parallel fast Fourier transforms for electronic

structure calculations

Peter D. Haynes and Michel Côté

Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge,
CB3 0HE, U.K.

Abstract

We present a new method for performing fast Fourier transforms for electronic struc-
ture calculations on parallel computers which minimises the latency cost involved
in communication between nodes. We compare the new and traditional methods
in theory and in practice, and thus suggest the conditions under which the new
method will be more efficient than current methods.

PACS numbers: 71.15.Ap, 02.70.Hm

Key words: Fast Fourier transform.

1 Introduction

The majority of the computational effort in electronic structure calculations
is spent solving the Schrödinger equation by diagonalising the Hamiltonian in
the representation of a finite basis set. When the size of this basis set greatly
exceeds the number of eigenfunctions of interest, then iterative diagonalisa-
tion methods are most efficient. The fundamental operation involved in these
iterative methods is the operation of the Hamiltonian matrix on a trial eigen-
vector.

The Hamiltonian consists of the sum of the kinetic and potential operators.
Within the pseudopotential approximation [1], the momentum-space formal-
ism [2], in which plane-waves are used as the basis set for the eigenfunctions,
has become widespread. In momentum-space, the kinetic operator is diago-
nal and hence trivially applied to a trial eigenvector. However, the operation
of the potential, a multiplication in real-space, is an expensive convolution in
momentum-space. The fast Fourier transform (FFT) [3] enables the trial eigen-
vector to be transformed cheaply between real- and momentum-space so that

Preprint submitted to Elsevier Science 7 November 2007



the potential may also be applied efficiently. The FFT is thus crucial to the
viability of the momentum-space formalism. Application of the Hamiltonian
matrix to a trial eigenvector thus involves two FFTs, and in most applications
it is the FFT which dominates the computational effort.

The implementation of the momentum-space method on parallel computers
involves the distribution of plane-waves across the nodes [4]. To perform an
FFT, it is thus necessary for all of the nodes to communicate with each other.
Even in the largest electronic structure calculations which can be performed
with current parallel computers, the 3D FFT grid is relatively small (typically
128 × 128 × 128), as compared with those found in other applications. The
amount of data sent between nodes is thus small, so that the latency cost
of the communication can be significant, and this prevents the method from
scaling well up to very large numbers of nodes.

In this paper, we present a new method for performing FFTs on parallel com-
puters which minimises the latency cost and thus offers the prospect of scaling
plane-wave electronic structure calculations up to a larger number of nodes
than is currently possible. This method will be most significant in enabling
electronic structure calculations to be performed on relatively inexpensive par-
allel computers consisting of a large number of networked workstations, which
are growing in popularity but which also suffer from high latencies.

The rest of the paper is organised as follows: in Sec. 2 we outline those aspects
of the derivation of the FFT which are relevant to our description of the new
parallel method. In Sec. 3 we briefly describe the current implementation and
in Sec. 4 we turn to a description of the new method. The costs of each
method and the conditions under which we expect them to be most efficient
are compared in Sec. 5. In Sec. 6 we present results for implementations of
both methods. We discuss the issue of load balancing in Sec. 7 and in Sec. 8
we draw our conclusions.

2 Fast Fourier transforms

For a full description of the FFT see, for example Ref. [5]. We consider a vector
of length n with elements xk where 0 ≤ k < n. The elements of the discrete
Fourier transform (DFT) of this vector, Xk, may then be defined by

Xk =
n−1∑

j=0

ωkj
n xj (1)

2



where ωn is one of the nth roots of unity ωn = exp(−2πi/n). The definition in
Eq. 1 is simply a premultiplication of the vector with elements xj by a matrix
with elements Fkj = ωkj

n , and this multiplication requires O(n2) operations.

Consider the following result, known as the Danielson-Lanczos lemma [6],
applied to Eq. 1 for even n = 2m:

Xk =
n−1∑

j=0, even

ωkj
n xj +

n−1∑

j=0, odd

ωkj
n xj

=
m−1∑

j′=0

ωk(2j′)
n x2j′ +

m−1∑

j′=0

ωk(2j′+1)
n x2j′+1

=
m−1∑

j′=0

ωkj′
m xe

j′ + ωk
n

m−1∑

j′=0

ωkj′
m xo

j′ (2)

in which we use the result ω2k
n = ωk

n/2 and introduce the notation xe
k = x2k

and xo
k = x2k+1 to represent the even and odd elements respectively. Equation

2 shows that a DFT of length n may be rewritten as the combination of two
DFTs of length n/2. This lemma may be applied recursively, as long as the
length of the DFT remains even, so that if n is a power of 2, it may be applied
until the trivial DFT of a vector of length 1 is required. In this case, the DFT
requires only O(n log2 n) operations, and this is the (radix-2) FFT. The lemma
may be generalised to apply when n contains factors other than 2.

In three dimensions, the definition of the DFT is

Xkxkykz =
nx−1∑

jx=0

ωkxjx
nx

ny−1∑

jy=0

ωkyjy
ny

nz−1∑

jz=0

ωkzjz
nz

xjxjyjz (3)

Equation 3 demonstrates that the three-dimensional DFT is the product of
3 one-dimensional DFTs which all commute with each other since they act
indepedently.

3 Traditional parallel implementation

The traditional distribution of data in electronic structure calculations is
shown schematically in Fig. 1 for the case of a 4 × 6 × 8 grid and 4 nodes.
When applying the potential to a trial eigenvector, the data is initially rep-
resented in momentum-space (on the left-hand side of Fig. 1) and each node
deals with a number of “rods” of data in the z-direction. In the first stage of
the 3D-FFT, each node performs a 1D-FFT in the z-direction on each of its

3



rods. The nodes then communicate to effect a transpose in which the data is
redistributed from “z-rods” to “y-rods” (middle of Fig. 1). Each node then
performs a second 1D-FFT in the y-direction on these rods. A second com-
munication stage transposes the data to “x-rods” (right of Fig. 1), and the
final stage is to perform a 1D-FFT on these x-rods. The DFT from real- to
momentum-space is performed similarly by reversing these operations.

momentum−
space

mixed−
space

real−
space

Processor:

z

x

y

0

2

3

1

Fig. 1. Distribution of data for traditional implementation.

4 New parallel implementation

In the traditional method, the communication phases simply redistribute the
data across the nodes so that the nodes can perform local 1D-FFTs. By con-
strast, in the new method we present here the communication phases also play
a rôle in the calculation of the 3D-FFT.

momentum−
space

real−
space

Processor:

z

x

y

0

2

3

1

Fig. 2. Distribution of data for new implementation.

The distribution of data in the new method is illustrated in Fig. 2, again for

4



a 4× 6× 8 grid and 4 nodes. This distribution is motivated by the Danielson-
Lanczos lemma. Each node now deals with a set of xy-planes. For simplicity,
consider first applying the Danielson-Lanczos lemma recursively to a 1D-FFT.
In the first step, the data is partitioned into even and odd elements. In the
second step, each of these two sets of data is partitioned into even and odd
elements again. Thus one obtains four sets of data: even-even, even-odd, odd-
even and odd-odd elemets. In the case of four nodes, we would therefore assign
one of these sets to each node, to obtain the pattern shown in Fig. 2. Since
the three 1D-FFTs in the x-, y- and z-directions in Eq. 3 commute, this
distribution is quite flexible, and an alternative is shown in Fig. 3 in which
the Danielson-Lanczos lemma has been applied in both the x- and y-directions.

momentum−
space

real−
space

Processor:

z

x

y

0

2

3

1

Fig. 3. Alternative distribution of data for new implementation.

Thus, instead of distributing data as rods as in the traditional method, each
node deals with a set of data which is picked uniformly from the full FFT grid.
In the case of a distribution across N nodes, each node thus deals with one of
the sets of data which would result after log2 N applications of the Danielson-
Lanczos lemma. Hence, in order to perform the FFT from momentum-space to
real-space, each node first performs a local 3D-FFT on its data. It then remains
for the nodes to communicate in order to combine this data to complete the
full FFT (i.e. to perform the multiplication by a phase factor and addition
shown in the last line of Eq. 2). When complete, each node possesses a single
contiguous block of real-space data (right of Figs. 2 and 3). Again, the DFT
from real- to momentum-space is performed by reversing the above operations.

Another advantage of the new method is that the Hamiltonian matrix is now
effectively blocked. The FFT permits the application of the Hamiltonian on
state vectors in O(n log n) operations. The new method distributes the data
such that each block of the matrix can be applied in O ((n/N) log(n/N)).
This opens up the possibility of applying iterative diagonalisation algorithms
for block matrices to the electronic structure problem to further decrease the

5



amount of communication.

5 Cost comparison

Both of the methods described in Secs. 3 and 4 require the same number of
floating point operations, but differ dramatically in their communication pat-
terns. The traditional method requires two transposition or communication
phases, and in general, each of these may require each node to communicate
with every other node. By contrast, the new method requires log2 N commu-
nication phases, but in each of these, the nodes communicate in a pairwise
fashion.

In the following analysis, we assume that the cost of communicating a packet
of data from one node to another consists of two parts. The first part is simply
the time taken to transmit the data between the nodes and depends upon the
bandwidth of the connection β and the size of the data packet. The second
part is a fixed overhead, the latency α, which is independent of the size of the
data packet. We define α and β for the situation in which a node is sending
a data packet to another node and simultaneously receiving a data packet of
the same size from another node.

In the traditional method, each of the two communication phases generally
involves each node communicating with every other node. This can be achieved
in N − 1 phases in which all of the nodes simultaneously send a data packet
to one node and receive a packet from another (usually different) node. The
total latency cost for the traditional parallel DFT is thus 2(N−1)α. We define
n = nxnynz to be the total number of data elements in the full FFT grid. In
the traditional method, each data packet has a size of nu/N2 where u is the
size of a single data element (typically 16 bytes for a double precision complex
data type). The total communication time involved in the traditional method,
τtrad is thus:

τtrad = 2 (N − 1)

[
α +

nu

βN2

]

≈ 2

[
αN +

nu

βN

]
, for large N. (4)

In the new method, there are log2 N communication phases in which each
node communicates with just one other node. The total latency cost for this
method is thus α log2 N . However, in this method, the size of the data packets
exchanged is nu/N , a factor of N larger than in the traditional method. The

6



total communication time for the new method, τnew is then:

τnew = log2 N

[
α +

nu

βN

]
(5)

The new method has a lower latency cost, due to the smaller number of data
packets sent, but a higher transmission cost due to the larger size of those
data packets. We therefore expect the new method to be advantageous in the
limit of a large number of processors N . In this limit, many processors need to
communicate with each other, but the packets they exchange are very small,
so that the latency cost dominates. Since the latency cost of the new method
increases only logarithmically instead of linearly, it should scale to a larger
number of processors.

The “cross-over” point at which the new method performs more efficiently
than the traditional method depends upon the hardware (and low-level soft-
ware libraries which interface to it), parametrised by α and β, and the size
of the FFT grid n. The smaller the FFT grid, the more competitive the new
method will be. It is for this reason that the method may be most useful
in electronic structure calculations in which the FFT grid sizes are relatively
small.

The product αβ defines the packet size which costs as much in latency as
transmission to send. On a cluster of PCs connected by 100 Mbit ethernet
this product is of the order of 2 Kbytes. We measured a very similar value for
a 64-node SGI Origin 2000 supercomputer. In both cases, the generic Message-
Passing Interface (MPI) was used. However, use of lower-level vendor-specific
libraries on the Origin would reduce the latency and hence the αβ product.
We therefore anticipate that the new method may be more suitable for imple-
mentation on clusters of workstations than on supercomputers designed and
built to run programs in parallel.

6 Results

In order to assess the validity of the analysis of Sec. 5 in practice, we compared
the communication times for both methods running on the CRAY T3E-1200E
at the University of Manchester. This machine was chosen because it enabled
us to compare the methods running on up to 512 nodes. However, as mentioned
at the end of Sec. 5, we would not expect this machine to give particularly
favourable results for the new method because its latency cost is small.

In Fig. 4 we plot the results for two different FFT grid sizes: 128×128×128 and

7



64×64×64. The implementation of each method used the same communication
library call. The results plotted were obtained by averaging the communication
times for 50 convolutions (i.e. both a forward and backward FFT) on the 1283

grid and 100 convolutions on the 643 grid. The error bars show the resulting
standard deviations. The dashed and dotted lines show the best fits to Eqs. 4
and 5 respectively.

4 8 16 32 64 128 256 512
Nodes

0

100

200

300

C
om

m
un

ic
at

io
n 

tim
e 

(m
s) New method

Fit
Old method
Fit

128x128x128 grid

4 8 16 32 64 128 256 512
Nodes

0

10

20

30

40

C
om

m
un

ic
at

io
n 

tim
e 

(m
s) New method

Fit
Old method
Fit

64x64x64 grid

Fig. 4. Comparison of average communication times for both methods applied to
128× 128× 128 (left) and 64× 64× 64 (right) grid sizes.

The quality of the fits of Eqs. 4 and 5 to the data supports our analysis. In
particular, the cross-over occurs at a smaller number of processors for the
case of the smaller FFT grid, as expected. On the machine used here, the new
method is out-performed by the old method for the reasons given above, and
would only be applicable for very small FFT grids or very large numbers (over
1000) of nodes. However, from the quality of the fit to the analysis of Sec. 5,
we would expect to be able to apply Eqs. 4 and 5 with confidence to estimate
how the methods would scale on other machines. For example, on the cluster
of PCs mentioned in Sec. 5, on which we measured a latency of about 300 µs
and a bandwidth of 8.7 Mbs−1, the expected cross-over points are 40 and 140
nodes for the 643 and 1283 grids respectively.

7 Load balancing

The completeness of the plane-wave basis set is usually specified by a sin-
gle parameter, the kinetic energy cutoff Ecut. Only those plane-waves with a
kinetic energy less than Ecut are included in the basis set used to describe
the eigenfunctions. The cutoff defines a sphere in momentum-space, which is

8



shown in Fig. 5 in relation to the full FFT grid.

z
y

x

Fig. 5. The sphere of plane-waves included in the basis set in relation to the full
FFT grid.

In order to ensure an even division of labour among the nodes (load balancing)
of the parallel computer, it is necessary to assign a roughly equal number of
plane-waves to each one. In the traditional method, this is achieved by sorting
the z-rods in order of their length (once they have been truncated by the cutoff
sphere) and assigning the rods to the nodes in turn according to that order.
This inevitably requires some book-keeping which can add to the cost of the
traditional method.

We note here that the new method automatically satisifies the demand of load
balancing. Since the plane-waves assigned to each node are spread uniformly
throughout the grid (see e.g. Fig. 3), the effect of the cutoff sphere is to
truncate the set of plane-waves on each node in the same fashion, so that
the number of plane-waves on each node remains balanced. In fact, the cutoff
sphere on the full FFT grid is transformed into a cutoff sphere on the FFT
grid on each node in the new method. Thus the book-keeping cost is only
associated with the local 3D-FFT performed on each node, whereas in the
traditional method it affects the communication pattern between nodes (e.g.
so that the packet sizes are no longer identical) and thus has a more significant
effect on performance.

8 Conclusions

We have presented a new method for performing FFTs on parallel computers
which scales to a larger number of nodes than the traditional method due to
the reduced latency cost. This is achieved by taking advantage of the inherent

9



data distribution required by the FFT algorithm. The method is applicable to
electronic structure calculations, due to the small sizes of FFT grids used, and
is most effective on clusters of workstations where the communication costs are
high. The new method automatically satsifies the demand of load balancing,
and effectively blocks the Hamiltonian matrix which may allow new iterative
diagonalisation algorithms for block matrices to be applied.

Acknowledgements

We would like to thank N. M. Maclaren, G. J. McMullan and P. R. C. Kent for
their assistance. The computational resources for the development of this work
were provided by the University of Cambridge High Performance Computing
Facility. We acknowledge the support of the U.K. Engineering and Physical
Sciences Research Council and Magdalene College, Cambridge (P.D.H.), and
of the Natural Sciences and Engineering Research Council of Canada (M.C.).

References

[1] V. Heine, The pseudopotential concept, in: H. Ehrenreich, F. Seitz and
D. Turnbull, eds., Solid State Physics Vol. 24 (Academic Press, New York, 1970)
1–36.

[2] J. Ihm, A. Zunger and M. L. Cohen, Momentum-space formalism for the total
energy of solids, J. Phys. C 12 (1979) 4409–4422.

[3] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex Fourier series, Math. Comput. 19 (1965) 297–301.

[4] L. J. Clarke, I. Štich and M. C. Payne, Large-scale ab initio total energy
calculations on parallel computers, Comput. Phys. Comm. 72 (1992) 14–28.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations (John Hopkins University
Press, Baltimore, 1996) 188–192.

[6] G. C. Danielson and C. Lanczos, Some improvements in practical Fourier analysis
and their application to X-ray scattering from liquids, J. Franklin Inst. 233
(1942) 365–380, 435–452.

10


