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The use of localized basis sets is essential in linear-scaling elec-
tronic structure calculations, and since such basis sets are mostly
non-orthogonal, it is necessary to solve the generalized eigenvalue
problem Hz = e¢Sz. In this work, an iterative method for find-
ing the lowest few eigenvalues and corresponding eigenvectors for
the generalized eigenvalue problem based on the conjugate gradient
method is presented. The method is applied to first-principles elec-
tronic structure calculations within density-functional theory using
a localized spherical-wave basis set, first introduced in the context
of linear-scaling methods [Comput. Phys. Commun. 102 (1997) 17].
The method exhibits linear convergence of the solution, the rate of
which is improved by a preconditioning scheme using the kinetic

energy matrix.
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1 Introduction

Linear-scaling electronic structure methods [1] are essential for calculations of
large systems containing many atoms. One of the criteria for the success of
such methods is the use of a high quality localized basis set, which is usually
non-orthogonal. Using such a basis set, one can formulate the electronic struc-
ture problem as a generalized eigenvalue problem Hxz = &Sz [2 4], which also
arises naturally in many other scientific disciplines. The properties of H and S
are that they are N x N Hermitian matrices and that S is also positive definite.
For the case where only the lowest few eigenvalue-eigenvector pairs of large N
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matrices are required, most direct diagonalization (e.g. Cholesky-Householder
procedure) methods which use similarity transformations [2 5] are inefficient
because all eigenvalue-eigenvector pairs are found. The computational effort
scales as N3, where N is the number of basis functions in the calculation. Iter-
ative methods which concentrate on only the lowest few eigenvalue-eigenvector
pairs are much more efficient [6 11], and are widely used to solve the standard
symmetric eigenvalue problem. Iterative solution of the generalized eigenvalue
problem usually proceeds by first performing a Cholesky decomposition of S
to obtain a standard symmetric eigenvalue problem. However, in this work
the generalized problem, cast into variational form, is solved by the conjugate
gradient method without first transforming to symmetric form. The gradient
method was proposed long ago by Hestenes and Karush [12,13] to solve the
eigenvalue problem, where they used a steepest descent method to perform
the minimization.

In this work, we first present an example of a generalized eigenvalue problem
taken from first-principles electronic structure calculations. An iterative con-
jugate gradient minimization method which finds the lowest few eigenvalues
and eigenvectors is then introduced. Although this method can be used for
Hermitian H and Hermitian-positive-definite S, it will be most efficient when
H and S are also sparse, a case which arises when large systems are studied
with localized basis sets. We have taken the tensor nature of the search di-
rection and other quantities into account. A preconditioning scheme related
to that discussed by Bowler and Gillan in a previous Communication [14] to
improve the convergence is proposed. To test the method we use a localized
spherical-wave basis set introduced in another Communication [15] to perform
first-principles calculations. Test cases are taken from the molecular chlorine
and bulk silicon systems. The rate of convergence of the solutions is one of
our main concerns here. Linear convergence of the solution is observed from
the results of calculations.

2 Formulation of the problem

We give a brief account of electronic structure calculations within density-
functional theory [16] which requires the generalized eigenvalue problem to be
solved (see Ref. [17] for a more comprehensive description). For a system of M
electrons, we need to solve self-consistently the Kohn-Sham equations which
assume the following form

[:Iwm(r) - _;;n,eVQ + V;H(r) 1/)m(r) = 5mwm(r)a (1)




where H is the Kohn-Sham Hamiltonian, with energy eigenvalues &, and
corresponding eigenstates ¢, (r). The effective potential Vg consists of three
terms; the classical electrostatic or Hartree potential, the exchange-correlation
potential, and the external potential [17]. The electron density is formed from
the M lowest or occupied eigenstates

p(r) = 2_:1 [ ()] (2)

The eigenstates satisfy the orthogonality constraints where

[ ar () = b (3)

for all m and n.

When a non-orthogonal basis set {x,(r)} is used, the eigenstates are written
as

Un(r) =D " Xa(r), (4)

where a labels a basis function y,(r). The right hand side of Eq. (4) has been
written as a contraction between a contravariant quantity x, and a covariant
quantity x(r). Substituting Eq. (4) into Eq. (1), taking inner products with
the {xa(r)}, and using the definitions

Sag = [ dr xa(5)xa(0) (5)

and

Haog = [ de () s (x), (6)

we obtain the generalized eigenvalue problem
Haﬂl‘nﬂ = SHSaﬂl‘nﬂ. (7)
In writing Eq. (7), we have adopted the Einstein summation notation where we

sum over repeated Greek indices. The orthogonality conditions of the Kohn-
Sham eigenstates in Eq. (3) translate into

m;“Sa,gmnﬁ = Opmn.- (8)



When Eq. (7) is solved, a new output electron density pggt is obtained and

a new input electron density for the next iteration can be constructed by a
linear (or more sophisticated [18]) mixing scheme e.g.

pIt — 0 (1 — )p?, (9)

where the optimum choice for f depends upon the eigenvalues of the static
dielectric matrix of the system. The mixing of densities is carried out until
Eq. (1) is solved self-consistently.

3 The iterative method

We shall now consider the case of a real, localized, non-orthogonal basis set,
and assume that a real symmetric generalized eigenvalue problem is to be
solved. To obtain the M lowest eigenstates, we minimize the objective function
Q2 which is the sum of M eigenvalues (formed by the Rayleigh quotients)

M M o B
szgnzzm (10)
n=1

)
7=t Tn®SapTn”

subject to the orthogonality constraints of Eq. (8). Q takes its minimum value
when {z;;i = 1,..., M} spans the same subspace as the M lowest eigenvectors
of Eq. (7). Even though the procedure given below is for a single eigenvector
update, it can be generalized easily to an M-eigenvector (or block) update
(see Appendix A).

The derivative of 2 with respect to z,,” is

052 2

Orm? (Tm®Saptm”) [

H,xn" — emSyan”] . (11)

Eq. (11) defines a covariant gradient
Oneo = czumn'u - EnSaumnu- (12)
As pointed out by White et al. [19], it is important to consider the tensor

property of the search direction. We define the dual basis functions x*(r) by
the conditions

[ ar e ma(e) = % (13)



The metric tensor S® can be defined in terms of the dual basis functions
where

§o6 — / dr x°(r)x? (). (14)

It can be shown that S®? transforms covariant vectors into contravariant vec-
tors and that S®’Sj, = 6*,. Hence we transform the covariant gradient g,,
into a contravariant gradient ¢, by using the metric tensor S where

I S“ﬁgnﬂ = S’aﬂHﬁw.ﬂ?n7 — enZn”. (15)
The contravariant gradient can then be used to update the eigenvector coef-
ficients in Eq. (4).

The constraints of Eq. (8) can be maintained (to first order) by ensuring that
the search direction g#a obtained from ¢, is orthogonal to the space spanned
by all the current approximate eigenvectors. By writing

gia = ,S’Oéﬂ[‘l/gfy.’lin’y — ety + meacmna (16)

and imposing the requirement that g#aSaﬂmmﬂ = 0 for all m and n, we find

Crm = EnOnm — mnaHaBmmﬂ. (17)
We then have
gt =S Hg " — > 2" (20" Howw,”) (18)
and
g,fa = (mxnﬂ — Sas meﬁ (xp" Hypzn”) . (19)

We can use Eq. (18) as the steepest descent direction for constructing the con-
jugate gradients. However, the convergence of the solution depends strongly
on the ratio of the largest and smallest eigenvalues of H [14,20]. Since the
largest eigenvalues are dominated by the basis functions with large kinetic

energy, we precondition the search direction using the kinetic energy matrix
T where

h - / dr x.(r)V?xs(r). (20)

Tap = 2m



We propose to obtain the preconditioned steepest descent direction G,“ in
the same manner as in Ref. [14] from the equation

a 1 a

which amounts to finding G,,* by solving

n o

1
(S +=T)asGo” = g5 (22)

T sets the kinetic energy scale for the preconditioning: components of the gra-
dient corresponding to basis functions with kinetic energy much lower than
7 are unaffected by the preconditioning, whereas the contribution of compo-
nents with kinetic energy much higher than 7 is suppressed. The limit 7 — oo
thus corresponds to the case of no preconditioning, while the effect of precon-
ditioning becomes stronger as 7 — (. Preconditioning which is too aggressive
leads to a degradation of performance, and even the wrong answer being ob-
tained, because it can reorder the lowest eigenvectors. We discuss the choice
of 7 in Sec. 4. This preconditioning scheme does not rely on the “diagonal
approximation” used in Ref. [14], which is appropriate in that case because
the overlap between different basis functions is not extensive. One can solve
Eq. (22) by using the standard preconditioned conjugate gradient method for
linear systems [4,21].

The search direction to be obtained from G, is also required to be orthogonal
to all approximate eigenvectors. By carrying out the same procedure as in Eq.
(16), we find the gradient which is orthogonal to all approximate eigenvectors
is given by

Gia =G, — mea(mmﬂsﬂ"/(;nv)' (23)

In the conjugate gradient minimization method, G- will be used to construct
a conjugate search direction D,” where

D," = -G 4+ D2 (24)
where D, is D, from the previous iteration. We give the expression for 7 in

the Polak-Ribiere formula where

_ Gi"Saplga” — 32 _ Gi"gr—Gi"§
é,{j“sagﬁffﬁ é#aaffa

i
v e (25)



The tilde signs again signify the quantities from the previous iteration. Line
minimization (see Appendix B) of € is then performed along the direction
D where

DF =D, =Y 200" S5, D,7), (26)

which is orthogonal to all approximate eigenvectors. We can systematically
update each eigenvector sequentially until the minimum value of €2 is found.
The single eigenvector update procedure described above can be generalized
to a block update procedure where all approximate eigenvectors are updated
simultaneously. The pseudo-code for the block update procedure can be found
in Appendix A.

4 Tests of the algorithm

In this section, we present the results obtained from the calculations based on
the block update procedure. Test cases are taken from the molecular chlorine
and bulk crystalline silicon systems. The localized spherical-wave basis set
[15] is used, where the basis functions are chosen to be centered on the atoms.
We have used norm-conserving Troullier-Martins pseudopotentials [22] in the
Kleinman-Bylander form [23], with angular momentum components up to [ =
2. We use an LDA [24] for the exchange and correlation term. Periodicity of
the supercell is assumed and the I' point is used for the k-point sampling.

A chlorine molecule of bond length 2.0 A is placed in a cubic box of side 10
A. With a cutoff energy of 640 eV and the basis-function radius R of 4.0 A, a
total of 2 x 139 = 278 basis functions are used. In Fig. 1 we display the conver-
gence of the sum of Kohn-Sham eigenvalues toward the “exact” value obtained
from direct matrix diagonalization, as a function of the iteration number. The
convergence of solution is seen to be linear when the number of iterations is
smaller than the number of basis functions. To investigate the effect of precon-
ditioning on the convergence of the solution, we have used a number of fixed 7
values. It is seen that the performance of the method improves with moderate
preconditioning. Fig. 1 shows that 7 should be about 10 eV for good conver-
gence. We have performed another calculation with 7 updated according to
the highest kinetic energy of all approximate eigenvectors, which converges to
24 eV. This is the natural choice for 7 used in other preconditioning schemes,
and the performance of this calculation (the curve labelled by open diamonds
©) is seen to be rather similar to that of the ‘optimal’ case with 7 = 10 eV.
This method therefore allows 7 to be chosen automatically, and optimized
during the calculation, rather than being another parameter which the user
must specify.



To investigate the importance of preserving the tensor nature of the search di-
rection, we have performed calculations with the same cutoff energy of 640 eV
on the molecular chlorine system, but this time with S set to the identity ma-
trix (this corresponds to the case where tensor nature of the search direction is
not preserved) and the off-diagonal elements of 7" set to zero (this corresponds
to the diagonal approximation used in Ref. [14]) when we solve Eq. 22. The
results of the calculations are presented in Fig. 2 where we have included the
tensor-nature-preserving (TNP) curves for comparison. It is found that that
the non-tensor-property-preserving (NTNP) cases fail to converge to the right
solution. We conclude that it is essential to take tensor properties into account
when one is dealing with a non-orthogonal basis set.

With a cutoff energy as high as 4800 eV (a total of 2x392 = 784 basis functions
are used in these calculations), Fig. 3 clearly indicates that it is crucial to use
the preconditioning scheme. A comparison between Figs. 1 and 3 reveals that
when the optimal value of 7 is used, the number of iterations to achieve the
same accuracy remains roughly the same, even though the number of basis
functions has more than doubled, which shows that the preconditioning scheme
is indeed working.

Similar tests are performed on the bulk crystalline silicon system. The calcu-
lations on a 64-atom silicon unit cell are performed at the equilibrium lattice
parameter of 5.43 A with an energy cutoff of 200 eV. We have chosen R to be
3.1 A which is sufficient for this purpose. These settings result in a total of
64 x 55 = 3520 basis functions for the calculations. In Fig. 4 we we note that
our ‘best’ 7 ~ 1 eV is comparable with the value of 3.8 eV used by Bowler and
Gillan [14]. We have performed another calculation with 7 updated according
to the highest kinetic energy of all approximate eigenvectors, which converges
to 12 eV. The performance of this calculation is seen to be rather similar to
that of the optimal cases with 7 =1 or 10 eV.

5 Conclusions

In this work we have proposed an iterative conjugate gradient method to
obtain the lowest few eigenvalues and corresponding eigenvectors of the gen-
eralized eigenvalue problem Hx = £Sx, which exhibits linear convergence. A
preconditioning scheme which uses the kinetic energy matrix is introduced to
improve the convergence of the solutions. The scheme is controlled by a single
parameter whose optimal value may be chosen automatically.
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Appendix A

The pseudo-code for solving the generalized eigenvalue problem Hxz = eSx
based on the block update procedure is as follows, where H, S and T" denote
the N x N Hamiltonian, overlap and kinetic energy matrices respectively. Let
X® = [x® xF  X®] be an N x M matrix where X* is the i-th

7

column of X®) and k labels the iteration.

The procedure is then:

k=1

Choose XM

Choose convergence tolerance €

Orthonormalize X (V) (Gram-Schmidt)
Calculate Q)

Choose Q) such that ‘Q(l) — Q(O)‘ > €

FO =0

A0 .— 0

" =1

while \QW _ QW)\ > ¢ do
y (k) . HX( )
7k = gx*

(k) .

pPk) . — (X( )) y (k)
F) .— y(k) _ 7(k) pk)
Solve (S + T/7)B%) = F*)
ck) .—
G k) .

( (Z( )) B)

(k) .— k) _ x®K) k)
" ((G( N F(k))
7; L G

k kL
®) 1= (AP = A?) fy
Ak = G )A(kﬂ)

E®) = (7 )TA
DE) .= Ak) _ x (k) p(k)



Aopt = linmin(X ®), D)) (see Appendix B)
X+ . x (k) )\OptD(k)
Orthonormalize X (*+1) (Gram-Schmidt)
Calculate Q+1)
k:=Fk+1

end

In some applications, individual eigenvalues are needed. They can be ob-
tained by a subspace rotation method where we simply need to diagonalize the
M x M matrix XTHX. If U diagonalizes X7 HX such that U'(XTHX)U =
diag(eq,€9,...,e0m), we obtain the individual eigenvalues {e;;i = 1,..., M}
with corresponding eigenvectors X' = XU.

Appendix B

To perform a line minimization from a point X*) along a certain direction
D®) we wish to find Aopt, the optimum value of A which minimizes

X( ) + )\Dn’;)) H(X( ) + )\D(’“))

m

:Z

27

This may be achieved in several ways. First, by calculating the derivative of
fatx=0, 4 d/\ o , taking a trial step A to evaluate f, = f(\;) and making

a parabolic fit to determine Agp;.

Alternatively, since

M2y + Ay + A26,)
mz::] 14+ X2(D,,)TSD,,)?’ (28)
where
Oy = (an)) SXx k) -(D,(ff))THX(’“) B
(Xff))THX(’“) '(D;’;)) sx®] (29)
by = (Xr(r’f))TSXr(rch)- (Dw)THD(k) 3
(x®)" HxP :(ijp) SDW| | (30)
en=|(x)" sD®] [(DW)" HDW) -




T
(Xﬁ)TfUX?}RDgw SDW| | (31)
we find A,py as one of the roots of the quadratic equation
a—+ b\ +c\’ =0, (32)

where a = Zam ete.
m
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Fig. 1. Convergence of the sum of eigenvalues Q (eV) as a function of iteration
number for the chlorine molecule calculations using a cutoff energy of 640 eV. Qg
is the “exact” value from the direct matrix diagonalization. The curve labelled by
empty diamonds (o) corresponds to the calculation where 7 is updated according
to the highest kinetic energy of all approximate eigenvectors.
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Fig. 2. Convergence of the sum of eigenvalues €2 (eV) as a function of iteration
number for the chlorine molecule calculation using a cutoff energy of 640 eV. The
curves show the difference between the tensor-nature-preserving (TNP) calculations
and non-tensor-nature-preserving (NTNP) calculations.
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Fig. 3. Convergence of the sum of eigenvalues Q (eV) as a function of iteration
number for the chlorine molecule calculations using a cutoff energy of 4800 eV. Qg
is the “exact” value from the direct matrix diagonalization. The curve labelled by
empty diamonds (o) corresponds to the calculation where 7 is updated according
to the highest kinetic energy of all approximate eigenvectors.
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Fig. 4. Convergence of the sum of eigenvalues Q (eV) as a function of iteration
number for the 64-atom Si crystal calculations using a cutoff energy of 200 eV. Qg
is the “exact” value from the direct matrix diagonalization. The curve labelled by
empty diamonds (o) corresponds to the calculation where 7 is updated according
to the highest kinetic energy of all approximate eigenvectors.
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