
Preconditioned conjugate gradient method for the sparsegeneralized eigenvalue problem in electronic structurecalculationsC. K. Gan, P. D. Haynes and M. C. PayneTheory of Condensed Matter, Cavendish Laboratory, Madingley Road, CambridgeCB3 OHE, U.K.The use of localized basis sets is essential in linear-scaling elec-tronic structure calculations, and since such basis sets are mostlynon-orthogonal, it is necessary to solve the generalized eigenvalueproblem Hx = "Sx. In this work, an iterative method for �nd-ing the lowest few eigenvalues and corresponding eigenvectors forthe generalized eigenvalue problem based on the conjugate gradientmethod is presented. The method is applied to �rst-principles elec-tronic structure calculations within density-functional theory usinga localized spherical-wave basis set, �rst introduced in the contextof linear-scaling methods [Comput. Phys. Commun. 102 (1997) 17].The method exhibits linear convergence of the solution, the rate ofwhich is improved by a preconditioning scheme using the kineticenergy matrix.PACS numbers: 02.60; 71.15Key words: Conjugate gradient. Eigenvalue problem.Preconditioning. Electronic structure.1 IntroductionLinear-scaling electronic structure methods [1] are essential for calculations oflarge systems containing many atoms. One of the criteria for the success ofsuch methods is the use of a high quality localized basis set, which is usuallynon-orthogonal. Using such a basis set, one can formulate the electronic struc-ture problem as a generalized eigenvalue problem Hx = "Sx [2{4], which alsoarises naturally in many other scienti�c disciplines. The properties of H and Sare that they are N�N Hermitian matrices and that S is also positive de�nite.For the case where only the lowest few eigenvalue-eigenvector pairs of large NPreprint submitted to Elsevier Preprint 11 July 2000



matrices are required, most direct diagonalization (e.g. Cholesky-Householderprocedure) methods which use similarity transformations [2{5] are ine�cientbecause all eigenvalue-eigenvector pairs are found. The computational e�ortscales as N3, where N is the number of basis functions in the calculation. Iter-ative methods which concentrate on only the lowest few eigenvalue-eigenvectorpairs are much more e�cient [6{11], and are widely used to solve the standardsymmetric eigenvalue problem. Iterative solution of the generalized eigenvalueproblem usually proceeds by �rst performing a Cholesky decomposition of Sto obtain a standard symmetric eigenvalue problem. However, in this workthe generalized problem, cast into variational form, is solved by the conjugategradient method without �rst transforming to symmetric form. The gradientmethod was proposed long ago by Hestenes and Karush [12,13] to solve theeigenvalue problem, where they used a steepest descent method to performthe minimization.In this work, we �rst present an example of a generalized eigenvalue problemtaken from �rst-principles electronic structure calculations. An iterative con-jugate gradient minimization method which �nds the lowest few eigenvaluesand eigenvectors is then introduced. Although this method can be used forHermitian H and Hermitian-positive-de�nite S, it will be most e�cient whenH and S are also sparse, a case which arises when large systems are studiedwith localized basis sets. We have taken the tensor nature of the search di-rection and other quantities into account. A preconditioning scheme relatedto that discussed by Bowler and Gillan in a previous Communication [14] toimprove the convergence is proposed. To test the method we use a localizedspherical-wave basis set introduced in another Communication [15] to perform�rst-principles calculations. Test cases are taken from the molecular chlorineand bulk silicon systems. The rate of convergence of the solutions is one ofour main concerns here. Linear convergence of the solution is observed fromthe results of calculations.
2 Formulation of the problemWe give a brief account of electronic structure calculations within density-functional theory [16] which requires the generalized eigenvalue problem to besolved (see Ref. [17] for a more comprehensive description). For a system ofMelectrons, we need to solve self-consistently the Kohn-Sham equations whichassume the following formĤ m(r) = "� �h22mer2 + Ve�(r)# m(r) = "m m(r); (1)2



where Ĥ is the Kohn-Sham Hamiltonian, with energy eigenvalues "m andcorresponding eigenstates  m(r). The e�ective potential Ve� consists of threeterms; the classical electrostatic or Hartree potential, the exchange-correlationpotential, and the external potential [17]. The electron density is formed fromthe M lowest or occupied eigenstates�(r) = MXm=1 j m(r)j2 : (2)The eigenstates satisfy the orthogonality constraints whereZ dr  �m(r) n(r) = �mn; (3)for all m and n.When a non-orthogonal basis set f��(r)g is used, the eigenstates are writtenas  n(r) = X� xn� ��(r); (4)where � labels a basis function ��(r). The right hand side of Eq. (4) has beenwritten as a contraction between a contravariant quantity xn and a covariantquantity �(r). Substituting Eq. (4) into Eq. (1), taking inner products withthe f��(r)g, and using the de�nitionsS�� = Z dr ���(r)��(r); (5)and H�� = Z dr ���(r)Ĥ��(r); (6)we obtain the generalized eigenvalue problemH��xn� = "nS��xn�: (7)In writing Eq. (7), we have adopted the Einstein summation notation where wesum over repeated Greek indices. The orthogonality conditions of the Kohn-Sham eigenstates in Eq. (3) translate intox�m�S��xn� = �mn: (8)3



When Eq. (7) is solved, a new output electron density �(i)out is obtained anda new input electron density for the next iteration can be constructed by alinear (or more sophisticated [18]) mixing scheme e.g.�(i+1)in = f�(i)out + (1� f)�(i)in ; (9)where the optimum choice for f depends upon the eigenvalues of the staticdielectric matrix of the system. The mixing of densities is carried out untilEq. (1) is solved self-consistently.3 The iterative methodWe shall now consider the case of a real, localized, non-orthogonal basis set,and assume that a real symmetric generalized eigenvalue problem is to besolved. To obtain theM lowest eigenstates, we minimize the objective function
 which is the sum of M eigenvalues (formed by the Rayleigh quotients)
 = MXn=1 "n = MXn=1 xn�H��xn�xn�S��xn� ; (10)subject to the orthogonality constraints of Eq. (8). 
 takes its minimum valuewhen fxi; i = 1; : : : ;Mg spans the same subspace as theM lowest eigenvectorsof Eq. (7). Even though the procedure given below is for a single eigenvectorupdate, it can be generalized easily to an M -eigenvector (or block) update(see Appendix A).The derivative of 
 with respect to xm
 is@
@xm
 = 2(xm�S��xm�) [H
�xm� � "mS
�xm�] : (11)Eq. (11) de�nes a covariant gradientgn� = H��xn� � "nS��xn�: (12)As pointed out by White et al. [19], it is important to consider the tensorproperty of the search direction. We de�ne the dual basis functions ��(r) bythe conditions Z dr ��(r)��(r) = ���: (13)4



The metric tensor S�� can be de�ned in terms of the dual basis functionswhere S�� = Z dr ��(r)��(r): (14)It can be shown that S�� transforms covariant vectors into contravariant vec-tors and that S��S�
 = ��
 . Hence we transform the covariant gradient gn�into a contravariant gradient gn� by using the metric tensor S�� wheregn� = S��gn� = S��H�
xn
 � "nxn�: (15)The contravariant gradient can then be used to update the eigenvector coef-�cients in Eq. (4).The constraints of Eq. (8) can be maintained (to �rst order) by ensuring thatthe search direction g?n � obtained from gn� is orthogonal to the space spannedby all the current approximate eigenvectors. By writingg?n � = S��H�
xn
 � "nxn� +Xm xm�cmn; (16)and imposing the requirement that g?n �S��xm� = 0 for all m and n, we �ndcnm = "n�nm � xn�H��xm�: (17)We then have g?n � = S��H�
xn
 �Xm xm� (xm�H��xn�) ; (18)and g?n � = H��xn� � S�� Xm xm� (xm�H��xn�) : (19)We can use Eq. (18) as the steepest descent direction for constructing the con-jugate gradients. However, the convergence of the solution depends stronglyon the ratio of the largest and smallest eigenvalues of H [14,20]. Since thelargest eigenvalues are dominated by the basis functions with large kineticenergy, we precondition the search direction using the kinetic energy matrixT where T�� = � �h22me Z dr ��(r)r2��(r): (20)5



We propose to obtain the preconditioned steepest descent direction Gn� inthe same manner as in Ref. [14] from the equationGn� = (S + 1� T )��g?n �; (21)which amounts to �nding Gn� by solving(S + 1� T )��Gn� = g?n �: (22)� sets the kinetic energy scale for the preconditioning: components of the gra-dient corresponding to basis functions with kinetic energy much lower than� are una�ected by the preconditioning, whereas the contribution of compo-nents with kinetic energy much higher than � is suppressed. The limit � !1thus corresponds to the case of no preconditioning, while the e�ect of precon-ditioning becomes stronger as � ! 0. Preconditioning which is too aggressiveleads to a degradation of performance, and even the wrong answer being ob-tained, because it can reorder the lowest eigenvectors. We discuss the choiceof � in Sec. 4. This preconditioning scheme does not rely on the \diagonalapproximation" used in Ref. [14], which is appropriate in that case becausethe overlap between di�erent basis functions is not extensive. One can solveEq. (22) by using the standard preconditioned conjugate gradient method forlinear systems [4,21].The search direction to be obtained from Gn� is also required to be orthogonalto all approximate eigenvectors. By carrying out the same procedure as in Eq.(16), we �nd the gradient which is orthogonal to all approximate eigenvectorsis given by G?n � = Gn� �Xm xm�(xm�S�
Gn
): (23)In the conjugate gradient minimization method, G?n � will be used to constructa conjugate search direction Dn� whereDn� = �G?n � + 
 ~D�n (24)where ~Dn is Dn from the previous iteration. We give the expression for 
 inthe Polak-Ribi�ere formula where
 = G?n �S��(g?n � � ~g?�n )~G?�n S��~g?�n = G?n �g?n � �G?n �~g?n�~G?�n ~g?n� : (25)6



The tilde signs again signify the quantities from the previous iteration. Lineminimization (see Appendix B) of 
 is then performed along the directionD?�n where D?n � = Dn� �Xm xm�(xm�S�
Dn
); (26)which is orthogonal to all approximate eigenvectors. We can systematicallyupdate each eigenvector sequentially until the minimum value of 
 is found.The single eigenvector update procedure described above can be generalizedto a block update procedure where all approximate eigenvectors are updatedsimultaneously. The pseudo-code for the block update procedure can be foundin Appendix A.4 Tests of the algorithmIn this section, we present the results obtained from the calculations based onthe block update procedure. Test cases are taken from the molecular chlorineand bulk crystalline silicon systems. The localized spherical-wave basis set[15] is used, where the basis functions are chosen to be centered on the atoms.We have used norm-conserving Troullier-Martins pseudopotentials [22] in theKleinman-Bylander form [23], with angular momentum components up to l =2. We use an LDA [24] for the exchange and correlation term. Periodicity ofthe supercell is assumed and the � point is used for the k-point sampling.A chlorine molecule of bond length 2.0 �A is placed in a cubic box of side 10�A. With a cuto� energy of 640 eV and the basis-function radius R of 4.0 �A, atotal of 2�139 = 278 basis functions are used. In Fig. 1 we display the conver-gence of the sum of Kohn-Sham eigenvalues toward the \exact" value obtainedfrom direct matrix diagonalization, as a function of the iteration number. Theconvergence of solution is seen to be linear when the number of iterations issmaller than the number of basis functions. To investigate the e�ect of precon-ditioning on the convergence of the solution, we have used a number of �xed �values. It is seen that the performance of the method improves with moderatepreconditioning. Fig. 1 shows that � should be about 10 eV for good conver-gence. We have performed another calculation with � updated according tothe highest kinetic energy of all approximate eigenvectors, which converges to24 eV. This is the natural choice for � used in other preconditioning schemes,and the performance of this calculation (the curve labelled by open diamonds�) is seen to be rather similar to that of the `optimal' case with � = 10 eV.This method therefore allows � to be chosen automatically, and optimizedduring the calculation, rather than being another parameter which the usermust specify. 7



To investigate the importance of preserving the tensor nature of the search di-rection, we have performed calculations with the same cuto� energy of 640 eVon the molecular chlorine system, but this time with S set to the identity ma-trix (this corresponds to the case where tensor nature of the search direction isnot preserved) and the o�-diagonal elements of T set to zero (this correspondsto the diagonal approximation used in Ref. [14]) when we solve Eq. 22. Theresults of the calculations are presented in Fig. 2 where we have included thetensor-nature-preserving (TNP) curves for comparison. It is found that thatthe non-tensor-property-preserving (NTNP) cases fail to converge to the rightsolution. We conclude that it is essential to take tensor properties into accountwhen one is dealing with a non-orthogonal basis set.With a cuto� energy as high as 4800 eV (a total of 2�392 = 784 basis functionsare used in these calculations), Fig. 3 clearly indicates that it is crucial to usethe preconditioning scheme. A comparison between Figs. 1 and 3 reveals thatwhen the optimal value of � is used, the number of iterations to achieve thesame accuracy remains roughly the same, even though the number of basisfunctions has more than doubled, which shows that the preconditioning schemeis indeed working.Similar tests are performed on the bulk crystalline silicon system. The calcu-lations on a 64-atom silicon unit cell are performed at the equilibrium latticeparameter of 5.43 �A with an energy cuto� of 200 eV. We have chosen R to be3.1 �A which is su�cient for this purpose. These settings result in a total of64� 55 = 3520 basis functions for the calculations. In Fig. 4 we we note thatour `best' � � 1 eV is comparable with the value of 3.8 eV used by Bowler andGillan [14]. We have performed another calculation with � updated accordingto the highest kinetic energy of all approximate eigenvectors, which convergesto 12 eV. The performance of this calculation is seen to be rather similar tothat of the optimal cases with � = 1 or 10 eV.
5 ConclusionsIn this work we have proposed an iterative conjugate gradient method toobtain the lowest few eigenvalues and corresponding eigenvectors of the gen-eralized eigenvalue problem Hx = "Sx, which exhibits linear convergence. Apreconditioning scheme which uses the kinetic energy matrix is introduced toimprove the convergence of the solutions. The scheme is controlled by a singleparameter whose optimal value may be chosen automatically.8



AcknowledgementC.K.G. acknowledges �nancial support from the Cambridge CommonwealthTrust and from St. John's College, Cambridge. P.D.H. acknowledges a Re-search Fellowship from Magdalene College, Cambridge. We thank Michel Côt�efor his useful comments on the manuscript.Appendix AThe pseudo-code for solving the generalized eigenvalue problem Hx = "Sxbased on the block update procedure is as follows, where H, S and T denotethe N �N Hamiltonian, overlap and kinetic energy matrices respectively. LetX(k) = hX(k)1 ; X(k)2 ; : : : ; X(k)M i be an N � M matrix where X(k)i is the i-thcolumn of X(k), and k labels the iteration.The procedure is then:k := 1Choose X(1)Choose convergence tolerance �Orthonormalize X(1) (Gram-Schmidt)Calculate 
(1)Choose 
(0) such that ���
(1) � 
(0)��� > �F (0) := 0A(0) := 0
(0)1 := 1while ���
(k) � 
(k�1)��� > � doY (k) := HX(k)Z(k) := SX(k)P (k) := (X(k))TY (k)F (k) := Y (k) � Z(k)P (k)Solve (S + T=�)B(k) = F (k)C(k) := (Z(k))TB(k)G(k) := B(k) �X(k)C(k)
(k)1 := tr �(G(k))TF (k)�
(k)2 := tr �(G(k))TF (k�1)�
(k) := �
(k)1 � 
(k)2 � =
(k�1)1A(k) := �G(k) + 
(k)A(k�1)E(k) := (Z(k))TA(k)D(k) := A(k) �X(k)E(k) 9



�opt := linmin(X(k); D(k)) (see Appendix B)X(k+1) := X(k) + �optD(k)Orthonormalize X(k+1) (Gram-Schmidt)Calculate 
(k+1)k := k + 1endIn some applications, individual eigenvalues are needed. They can be ob-tained by a subspace rotation method where we simply need to diagonalize theM �M matrix XTHX. If U diagonalizes XTHX such that UT (XTHX)U =diag("1; "2; : : : ; "M), we obtain the individual eigenvalues f"i; i = 1; : : : ;Mgwith corresponding eigenvectors X 0 = XU .Appendix BTo perform a line minimization from a point X(k) along a certain directionD(k), we wish to �nd �opt, the optimum value of � which minimizesf(�) = MXm=1 (X(k)m + �D(k)m )TH(X(k)m + �D(k)m )(X(k)m + �D(k)m )TS(X(k)m + �D(k)m ) : (27)This may be achieved in several ways. First, by calculating the derivative off at � = 0, dfd� ����=0, taking a trial step �t to evaluate ft = f(�t) and makinga parabolic �t to determine �opt.Alternatively, since dfd� = MXm=1 2(am + �bm + �2cm)(1 + �2(Dm)TSDm)2 ; (28)wheream= ��X(k)m �T SX(k)m � ��D(k)m �T HX(k)m ����X(k)m �T HX(k)m � ��D(k)m �T SX(k)m � ; (29)bm= ��X(k)m �T SX(k)m � ��D(k)m �T HD(k)m ����X(k)m �T HX(k)m � ��D(k)m �T SD(k)m � ; (30)cm= ��X(k)m �T SD(k)m � ��D(k)m �T HD(k)m ��10
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Fig. 1. Convergence of the sum of eigenvalues 
 (eV) as a function of iterationnumber for the chlorine molecule calculations using a cuto� energy of 640 eV. 
0is the \exact" value from the direct matrix diagonalization. The curve labelled byempty diamonds (�) corresponds to the calculation where � is updated accordingto the highest kinetic energy of all approximate eigenvectors.
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Fig. 3. Convergence of the sum of eigenvalues 
 (eV) as a function of iterationnumber for the chlorine molecule calculations using a cuto� energy of 4800 eV. 
0is the \exact" value from the direct matrix diagonalization. The curve labelled byempty diamonds (�) corresponds to the calculation where � is updated accordingto the highest kinetic energy of all approximate eigenvectors.
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