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O Lord, our Lord,
how majestic is your name in all the earth!

You have set your glory
above the heavens.

From the lips of children and infants
you have ordained praise

because of your enemies,
to silence the foe and the avenger.

When I consider your heavens,
the work of your fingers,

the moon and the stars,
which you have set in place,

what is man that you are mindful of him,
the son of man that you care for him?

You made him a little lower than the heavenly beings
and crowned him with glory and honour.

You made him ruler over the works of your hands;
you put everything under his feet:

all flocks and herds,
and the beasts of the field,

the birds of the air,
and the fish of the sea,
all that swim the paths of the seas.

O Lord, our Lord,
how majestic is your name in all the earth!

Psalm 8
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Chapter 1

Introduction

1.1 Quantum mechanics

Newton’s Principia Mathematica was the climax of a revolution in man’s perception of the

Universe, resulting in the acceptance of mathematical physics as a reliable and powerful

tool for describing nature. The same laws which accurately predicted the motion of plan-

ets around the sun also accounted for the trajectories of terrestrial projectiles, including

that legendary windfall apple. So remarkable was the enormous range of scales over which

the laws were observed to work, that many believed that they applied universally. Two

centuries later, however, a second revolution took place in which classical Newtonian me-

chanics was found to be inadequate for explaining phenomena on the atomic scale, and a

new theory was required. This theory was quantum mechanics.

Despite the philosophical questions of interpretation [1] which arise from the new the-

ory, few question the astounding accuracy with which quantum mechanics describes the

world around us. The favourite example cited is that of relativistic quantum field theory’s

prediction of the gyromagnetic ratio of the electron [2], which agrees with experiment [3]

to better than one part in a million. Today there is little doubt that quantum theory ap-

plied to electrons and atomic nuclei provides the foundation for all of low-energy physics,

chemistry and biology, and that if we wish to describe complex processes occurring in real

materials precisely, we should attempt to solve the equations of quantum mechanics.

Unfortunately, the equations are too complicated to be solved analytically for all but

the simplest (and hence most trivial) of systems. The only hope of bringing the power

of quantum mechanics to bear on real phenomena of genuine interest to contemporary

scientists, and of relevance to our society in general, is to solve the equations numerically

by modelling the processes of interest computationally.

1



2 Linear-scaling methods in ab initio quantum-mechanical calculations

1.2 Computer simulations

Many aspects of computational modelling make it a worthy partner of experimental science.

The chemist studying a particular reaction can reach into the computer simulation, alter

bond lengths or angles, and then observe the effect of such changes on the process taking

place. The geophysicist interested in phase transitions occurring deep inside the earth can

model pressures and temperatures which could never be reached in a laboratory. All of

this can be achieved with a single piece of apparatus – the computer itself.

Quantum-mechanical calculations stand out because they are by design ab initio i.e.

from first-principles, calculations. They do not depend upon any external parameters

except the atomic numbers of the constituent atoms to be modelled and cannot therefore

be biased by preconceptions about the final result. Such calculations are reliable and can

be used with confidence to predict the behaviour of nature.

Nevertheless, the same complexity which precludes exact analytical solution also results

in the highly unfavourable scaling of computational effort and resources required. The

computational demands of exact calculations grow exponentially with the size of the system

being studied, so that they are too costly to be of significant practical use. Despite the

relentless progress of computer technology, this scaling makes this approach inviable for

some time yet.

Well-controlled approximations can be employed to enable the equations to be solved

much more efficiently without sacrificing the predictive power or parameter-free nature of

quantum-mechanical calculations. Much progress has been made in recent years in develop-

ing methods which exhibit polynomial rather than exponential scaling. One such method,

that of density-functional theory, coupled with a simple description of the quantum-

mechanical effects of exchange and correlation and the pseudopotential approximation,

has proved to be remarkably successful and is currently applied worldwide by scientists in

a wide range of disciplines. Even this method, however, requires a computational effort

which scales with the cube of the system-size i.e. is O(N3), and so is limited in the scale

of simulation which can be realistically attempted.

The aim of the work described in this dissertation is to develop new schemes for perform-

ing density-functional calculations which lose none of the accuracy of current approaches,

but which require an effort which scales only linearly with system-size i.e. O(N). A ten-fold

increase in computing power then results in a ten-fold increase in accessible system-size.

Therefore these methods are sought after not only because they increase the range of ap-

plicability of quantum-mechanical calculations now, but also because they will take full

advantage of future improvements in computing resources.
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1.3 Dissertation outline

In chapter 2 we outline some of the founding principles of quantum mechanics, highlighting

the origin of the complexity of the problem of quantum-mechanical many-body systems,

describing how the electronic and nuclear degrees of freedom can be separated and demon-

strating the power of variational methods for solving the quantum-mechanical equations.

In chapter 3 we turn to a description of the problem of the inhomogeneous “gas” of

interacting electrons moving in a static potential due to the nuclei. Density-functional

theory allows us to tackle the many-body problem and obtain all of the ground-state prop-

erties of the electronic system. We outline in particular the local density approximation

for exchange and correlation, the treatment of periodic systems and the pseudopotential

approximation. The latter allows the calculation to be simplified by eliminating the chem-

ically inert core electrons from the simulation.

In chapter 4 we generalise DFT to include partial occupation of single-particle states.

From this the density-matrix formulation of density-functional theory can be derived, and

we show how this can be used to obtain a foundation for linear-scaling methods. We

discuss the various requirements this makes on the form of the density-matrix, and also

the constraints which must be applied to obtain physically meaningful solutions, focusing in

particular on the difficult idempotency condition. We also consider some of the issues which

arise when the density-matrix is expressed in terms of a set of non-orthogonal functions.

In chapter 5 we address one of the issues raised by preliminary investigations: how

to describe the density-matrix in real-space and still deal accurately with quantities nat-

urally treated in reciprocal-space, particularly the kinetic energy. We propose a new set

of localised basis functions, for which analytic results for the overlap, kinetic energy and

non-local pseudopotential matrix elements can be obtained, thus satisfying the demand to

concentrate on a real-space description while still evaluating these quantities accurately.

In chapter 6 we discuss the use of penalty functionals to impose the idempotency

constraint. We begin by reviewing Kohn’s proposal for the use of a penalty functional

to exactly impose the idempotency constraint, and show how this is incompatible with

computational minimisation schemes. We then present an original method which uses a

penalty functional to approximately impose the idempotency constraint, but which still

allows the use of efficient minimisation algorithms. Because the density-matrix obtained

by this method is only approximately idempotent, the total energy calculated from it

differs from the true ground-state energy. We therefore show how it is possible to derive

a correction to the total energy from the penalty functional, which gives very accurate

estimates of the true ground-state energy from only approximately idempotent density-

matrices.



4 Linear-scaling methods in ab initio quantum-mechanical calculations

In chapter 7 we outline how the scheme of chapter 6 can be implemented computation-

ally, focusing first on the calculation of the energy and its derivatives. We then examine

these derivatives to show that the two types of variation which are made are equivalent to

solving the Kohn-Sham equations and making the Hamiltonian and density-matrix com-

mute. We describe how the gradients may be improved by preconditioning, and also how

they should be corrected to take account of their tensor properties. Finally we discuss

the imposition of the normalisation constraint, and give a general outline of the scheme as

currently implemented.

In chapter 8 we describe methods for relating the different quantities used in traditional

and linear-scaling calculations and show how the results obtained from one method can

be used in the other. We concentrate on the application of such methods to obtain good

initial density-matrices for linear-scaling calculations which can speed up the convergence

to the ground-state solution.

In chapter 9 we present results for the scheme outlined in chapters 6 and 7 when applied

to bulk crystalline silicon. We show how the energy converges as the range of the density-

matrix is increased, and compare predicted physical properties with those calculated using

traditional methods and with experiment. We also consider the scaling of the method with

respect to system-size and the density-matrix range.

Finally in chapter 10 we summarise the results obtained so far and outline the direction

for future work in this field.



Chapter 2

Many-body Quantum Mechanics

In this chapter we introduce some of the principles of many-body quantum mechanics,

applied to systems consisting of atomic nuclei and electrons. First we outline the general

principles of quantum mechanics, the properties of wave-functions and operators, which

will later be used to reformulate the problem in terms of the density-matrix. We present

the Born-Oppenheimer approximation used to separate the motion of the nuclei from that

of the electrons, so that the problem is reduced to that of solving the equations of motion

for an electron gas in a static potential. The consequences of the indistinguishability of

identical particles are then discussed, as well as results of the relativistic theory of quantum

mechanics which need to be included by hand in our non-relativistic treatment. Finally

the powerful variational principle is introduced which is often used in solving the equations

of quantum mechanics.

2.1 Principles of quantum mechanics

2.1.1 Wave-functions and operators

The theory of quantum mechanics is built upon the fundamental concepts of wave-functions

and operators . The wave-function is a single-valued square-integrable function of the sys-

tem parameters and time which provides a complete description of the system. Linear

Hermitian operators act on the wave-function and correspond to the physical observables ,

those dynamical variables which can be measured, e.g. position, momentum and energy.

For systems of atomic nuclei1 and electrons, which are the subject of this dissertation,

the system parameters might be taken to be a set of position variables of the constituent

particles (the notation adopted in this and the following chapters is to refer to electronic

1At the atomic energy scales which are of interest in this work, the nuclei are extremely well-described
as massive point charges and their internal structure is safely neglected.

5



6 Linear-scaling methods in ab initio quantum-mechanical calculations

variables using a latin index and nuclear variables with a greek index) i.e. {{ri}, {rα}},
their momenta {{pi}, {pα}} or even a mixture of the two e.g. {{ri}, {pα}}. In contrast

to a Newtonian system which is completely described by the positions and momenta of

its constituents, the quantum-mechanical wave-function is a function of only one of these

parameters per particle2. The wave-function for the system is thus typically denoted by

Ψ ({ri}, {rα}, t).
A notation due to Dirac [4] is often employed, which reflects the fact that this wave-

function is simply one of many representations of a single state-vector in a Hilbert space,

which is written as |Ψ〉, known as a ket . There also exists a dual space containing a set of bra

vectors, denoted 〈Ψ|, defined by their scalar products and in one-to-one correspondence

with the kets. The scalar product is written as a braket and is anti-linear in the first

argument and linear in the second: thus 〈Ψ|Φ〉 = (〈Φ|Ψ〉)∗. It is worth noting here that

state-vectors which differ only by a multiplicative non-zero complex constant describe the

same state: we can thus restrict our interest to the set of normalised vectors defined such

that the scalar product of the vector with its own conjugate equals unity:

〈Ψ|Ψ〉 =
∫ ∏

j

drj
∏

β

drβ Ψ∗ ({ri}, {rα}, t) Ψ ({ri}, {rα}, t) = 1. (2.1)

The operator corresponding to some observable O is often written Ô, and in general

when this operator acts on some state-vector |Ψ〉, a different (not necessarily normalised)

state-vector |Φ〉 results:

Ô|Ψ〉 = |Φ〉. (2.2)

However, for each operator there exists a set of normalised eigenstates , say {|χn〉}, which

remain unchanged by the action of the operator i.e.

Ô|χn〉 = λn|χn〉, (2.3)

in which the constant λn (always real for Hermitian operators) is the eigenvalue.

The postulates of quantum mechanics [5] state that for a system in state |Ψ〉:

• the outcome of a measurement of a dynamical variable is always one of the eigenvalues

λn of the corresponding operator,

• immediately following a measurement, the state-vector collapses to the eigenstate

|χn〉 corresponding to the measured eigenvalue3,

2We are neglecting spin in this discussion.
3For the case of eigenvalue degeneracy, the state-vector collapses to a vector lying in the subspace

spanned by all of the eigenvectors corresponding to the measured eigenvalue.
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• the probability of such a measurement4 is

P (λn) = |〈χn|Ψ〉|2 . (2.4)

2.1.2 Expectation values

Much of the power of the theory comes from the fact that the quantum-mechanical states

can be linearly superposed since this leads to no ambiguity in the action of linear operators5.

We now consider the quantity 〈Ψ|Ô|Ψ〉. From Sturm-Liouville theory, the eigenstates of the

operator Ô form a complete set , which means that any valid state-vector can be expressed

as a linear superposition of those eigenstates with appropriate complex coefficients {cn}:

|Ψ〉 =
∑
n

cn|χn〉. (2.5)

These coefficients are easily obtained for Hermitian operators because the eigenstates are

orthogonal (or can always be chosen to be orthogonal in the case of degenerate eigenvalues)

which means that the scalar product of two different eigenstates vanishes:

〈χn|χm〉 = δnm. (2.6)

Either taking scalar products of both sides of equation 2.5 with the eigenstates {〈χm|}, or

by using the following concise expression of completeness;

∑
n

|χn〉〈χn| = 1, (2.7)

the expansion coefficients {cn} can be determined:

cn = 〈χn|Ψ〉, (2.8)

|Ψ〉 =
∑
n

|χn〉〈χn|Ψ〉. (2.9)

Now this result is applied to the quantity 〈Ψ|Ô|Ψ〉:

〈Ψ|Ô|Ψ〉 =
∑
m

(〈χm|Ψ〉)∗ 〈χm|Ô
∑
n

|χn〉〈χn|Ψ〉

=
∑
n

λn |〈χn|Ψ〉|2 (2.10)

4Again, for the degenerate case, the probabilities must be summed for all eigenvectors corresponding
to the measured eigenvalue.

5For a linear operator Ô, Ô(α|A〉+ β|B〉) = αÔ|A〉+ βÔ|B〉.
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in which we have used the fact that Ô is linear, that the {|χn〉} are eigenstates of Ô (2.3)

and the orthonormality relation (2.6).

Since the only possible outcomes of a measurement of the observable O corresponding

to operator Ô are the eigenvalues {λn}, with corresponding probabilities |〈χn|Ψ〉|2 (2.4),

the quantity 〈Ψ|Ô|Ψ〉 is to be interpreted as the expectation value of O for a system in

state |Ψ〉. The normalisation condition 〈Ψ|Ψ〉 = 1 corresponds to the condition that the

probabilities sum to unity.

2.1.3 Stationary states

The final postulate of quantum mechanics states that between measurements, the state-

vector evolves in time according to the time-dependent Schrödinger equation6:

Ĥ|Ψ〉 = i
∂

∂t
|Ψ〉. (2.11)

This treatment is non-relativistic: for heavy atoms there are significant relativistic effects

but these can be incorporated a posteriori in the construction of the pseudopotentials (see

3.3). The operator Ĥ is known as the Hamiltonian and is the energy operator, which for

systems of atomic nuclei and electrons takes the form

Ĥ = −1

2

∑

i

∇2
i −

∑
α

1

2mα

∇2
α −

∑

i

∑
α

Zα
|ri − rα| +

1

2

∑

i

∑

j 6=i

1

|ri − rj| +
1

2

∑
α

∑

β 6=α

ZαZβ
|rα − rβ|

(2.12)

in which the nuclear masses mα and atomic numbers Zα appear. The first two terms on

the right-hand side represent the kinetic energies of the electrons and nuclei respectively.

The subsequent terms describe the electron-nuclear, electron-electron and inter-nuclear

Coulomb interaction energies respectively.

Finally we note that if we solve the time-independent Schrödinger equation, the eigen-

value equation for the Hamiltonian, then the time-dependence of the wave-function takes

a particularly simple form. The following separation of variables is made:

Ψ ({ri}, {rα}, t) = Ψ̃ ({ri}, {rα}) Θ(t) (2.13)

which is successful and leads to the following equations, where E is the separation constant:

ĤΨ̃ ({ri}, {rα}) = EΨ̃ ({ri}, {rα}) , (2.14)

i
d

dt
Θ(t) = EΘ(t). (2.15)

6Atomic units are used throughout (unless otherwise stated): h̄ = me = e = 4πε0 = 1.
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The ordinary differential equation 2.15 is straightforwardly solved, so that eigenfunctions

of the Hamiltonian with energy E take the form:

Ψ ({ri}, {rα}, t) = Ψ̃ ({ri}, {rα}) exp (−iEt) . (2.16)

States which are eigenfunctions of the Hamiltonian are also known as stationary states

because the expectation values of time-independent operators for these states are also

independent of time:

〈Ψ|Ô|Ψ〉 =
∫ ∏

j

drj
∏

β

drβ Ψ∗ ({ri}, {rα}) ÔΨ ({ri}, {rα})

=
∫ ∏

j

drj
∏

β

drβ Ψ̃∗ ({ri}, {rα}) exp (iEt) ÔΨ̃ ({ri}, {rα}) exp (−iEt)

= 〈Ψ̃|Ô|Ψ̃〉. (2.17)

From now on we shall be dealing with eigenstates of the Hamiltonian, and so will suppress

the exponential time-dependence of the state and deal directly with the time-independent

state |Ψ̃〉 instead.

2.2 The Born-Oppenheimer approximation

The forces on both electrons and nuclei due to their electric charge are of the same order

of magnitude, and so the changes which occur in their momenta as a result of these forces

must also be the same. One might, therefore, assume that the actual momenta of the

electrons and nuclei were of similar magnitude. In this case, since the nuclei are so much

more massive than the electrons, they must accordingly have much smaller velocities.

Thus it is plausible that on the typical time-scale of the nuclear motion, the electrons

will very rapidly relax to the instantaneous ground-state configuration, so that in solving

the time-independent Schrödinger equation resulting from the Hamiltonian in equation

2.12, we can assume that the nuclei are stationary and solve for the electronic ground-

state first, and then calculate the energy of the system in that configuration and solve

for the nuclear motion. This separation of electronic and nuclear motion is known as the

Born-Oppenheimer approximation [6].

Following Ziman [7], we assume the following form of an eigenfunction for the Hamil-

tonian (2.12):

Ψ̃ ({ri}, {rα}) = Ψ ({ri}; {rα}) Φ ({rα}) (2.18)

and require that Ψ ({ri}; {rα}) (which is a wave-function only of the {ri} with the {rα}
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as parameters) satisfies the time-independent Schrödinger equation for the electrons in a

static array of nuclei:


−1

2

∑

i

∇2
i −

∑

i

∑
α

Zα
|ri − rα| +

1

2

∑

i

∑

j 6=i

1

|ri − rj|


 Ψ ({ri}; {rα}) = Ee ({rα}) Ψ ({ri}; {rα})

(2.19)

in which the dependence of the eigenvalues Ee on the nuclear positions is acknowledged.

Applying the full Hamiltonian (2.12) to the whole wave-function:

ĤΨ̃ ({ri}, {rα}) =


−∑

β

1

2mβ

∇2
β + Ee ({rα}) +

1

2

∑

β

∑

γ 6=β

ZβZγ
|rβ − rγ|


 Ψ̃ ({ri}, {rα})

= Ψ ({ri}; {rα})

−∑

β

1

2mβ

∇2
β + Ee ({rα}) +

1

2

∑

β

∑

γ 6=β

ZβZγ
|rβ − rγ|


 Φ ({rα})

−∑

β

1

2mβ

[
2∇βΦ ({rα}) · ∇βΨ ({ri}; {rα}) + Φ ({rα})∇2

βΨ ({ri}; {rα})
]

(2.20)

The energy Ee ({rα}) is called the adiabatic contribution of the electrons to the energy

of the system. The remaining non-adiabatic terms contribute very little to the energy,

which can be demonstrated using time-independent perturbation theory [8]. The first

order correction arising from the first non-adiabatic term in the last line of equation 2.20

is of the form:

−
∫ ∏

j

drj
∏

β

drβΨ
∗ ({ri}; {rα}) Φ∗ ({rα})

∑
γ

1

mγ

[
∇γΦ ({rα}) · ∇γΨ ({ri}; {rα})

= −∑
γ

∫ ∏

β

drβΦ
∗ ({rα})∇γΦ ({rα}) ·




∫ ∏

j

drjΨ
∗ ({ri}; {rα})∇γΨ ({ri}; {rα})




(2.21)

and the term in square brackets can be rewritten

∫ ∏

j

drjΨ
∗ ({ri}; {rα})∇γΨ ({ri}; {rα}) = 1

2
∇γ

∫ ∏

j

drj |Ψ ({ri}; {rα})|2

= 1
2
∇γ(1) = 0, (2.22)

since the normalisation of the electronic wave-function does not change when the nuclei

move, so that the first order contribution vanishes. The second-order shift due to this term

does not vanish and gives rise to transitions between electronic states as the ions move,

otherwise known as the electron-phonon interaction, which will modify the energy.

The second non-adiabatic term in the final term of equation 2.20 will be largest when the
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electrons labelled i are tightly bound to the nuclei labelled α in which case Ψ ({ri}; {rα}) =

Ψ
(
{u(i,α)}

)
where u(i,α) = ri − rα and the first order correction from this term is

−
∫ ∏

j

drj
∏

β

drβΨ
∗ (
{u(i,α)}

)
Φ∗ ({rα})

∑
γ

1

2mγ

[
Φ ({rα})∇2

γΨ
(
{u(i,α)}

)]

= −∑
γ

1

2mγ




∫ ∏

β

drβ |Φ ({rα})|2






∫ ∏

(j,β)

du(j,β)Ψ
∗ (
{u(i,α)}

)
∇2
γΨ

(
{u(i,α)}

)



= − ∑

(k,γ)

1

mγ

∫ ∏

(j,β)

du(j,β)Ψ
∗ (
{u(i,α)}

) 1

2
∇2

(k,γ)Ψ
(
{u(i,α)}

)
, (2.23)

and this quantity is of the order of the electronic kinetic energy multiplied by the ratio of

the electron and nuclear masses, typically a factor of the order of 10−4 or 10−5, so that the

contributions from this term to all orders can be neglected.

We therefore neglect the non-adiabatic terms and note that equation 2.20 is satisfied if

Φ ({rα}) obeys a Schrödinger equation of the form


−∑

β

1

2mβ

∇2
β + Ee({rα}) +

1

2

∑

β

∑

γ 6=β

ZβZγ
|rβ − rγ|


 Φ ({rα}) = EΦ ({rα}) . (2.24)

This adiabatic principle is crucial because it allows us to separate the nuclear and

electronic motion, leaving a residual electron-phonon interaction. From this point on it

is assumed that the electrons respond instantaneously to the nuclear motion and always

occupy the ground-state of that nuclear configuration. Varying the nuclear positions maps

out a multi-dimensional ground-state potential energy surface, and the motion of the nuclei

in this potential can then be solved. In practice Newtonian mechanics generally suffices for

this part of the problem7, and relaxation of the nuclear positions to the minimum-energy

configuration or molecular dynamics [11, 12] can be performed. These aspects go beyond

the scope of this dissertation so that from now on it is assumed that a system with a fixed

nuclear configuration is to be treated, so that the electronic energy Ee is a constant and the

electronic wave-function Ψ ({ri}) obeys the Schrödinger equation 2.19. The dependence of

the electronic wave-function on the nuclear positions {rα} is now suppressed.

7The most notable exception to this rule is the motion of hydrogen, which is often treated using the
path-integral formulation of quantum mechanics [9, 10].
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2.3 Identical particles

2.3.1 Symmetries

It is a consequence of quantum mechanics, usually expressed in the terms of the Heisen-

berg uncertainty principle that, in contrast to Newtonian mechanics, the trajectory of a

particle is undefined. When dealing with identical particles this leads to complications, as

illustrated in figure 2.1.

A

C

D

B

Figure 2.1: Indistinguishable particles in quantum mechanics: (left) initially there are
two particles at A and B, later on two particles are found at C and D; (middle) but we
cannot be certain whether the particles travelled from A to D and B to C or (right) from
A to C and B to D, because they are identical.

Consider a system of two identical particles represented by the wave-function Ψ(r1, r2)

and a particle-exchange operator P̂12 which swaps the particles i.e.

P̂12Ψ(r1, r2) = Ψ(r2, r1). (2.25)

However, since the system must be unchanged by such an exchange of identical particles,

the two states appearing in equation 2.25 must be the same and hence differ only by a

multiplicative complex constant;

Ψ(r2, r1) = cΨ(r1, r2), (2.26)

so that many-body wave-functions of identical particles must be eigenstates of the particle

interchange operator. Performing the exchange twice clearly returns the system precisely

to its original state and so leads to

P̂ 2
12Ψ(r1, r2) = c2Ψ(r1, r2) = Ψ(r1, r2) (2.27)
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i.e. c2 = 1 so c = ±1, and the many-body wave-function at most changes sign under particle

exchange. This result is readily extended to systems of more than two identical particles,

so that the wave-functions are either symmetric or antisymmetric under exchange of any

two identical particles.

2.3.2 Spin and statistics

It is necessary to go to the full relativistic theory of quantum mechanics in order to ascertain

which sign is appropriate to a system of particles, although the result itself is simple

enough to express8. A result of the relativistic theory is that particles may possess intrinsic

angular momentum known as spin, which is quantised in units of 1
2
. A brief outline of the

relationship between spin and statistics follows.

We use the method of second quantisation of fields of particles with spin (see [14]). For

a system of free non-interacting particles, the single-particle states are characterised by

linear momentum p and spin σ. We denote the occupation numbers of these states Npσ,

but for now we will only consider situations in which every single-particle state is either

empty or singly occupied, and in addition will consider a system of at most two particles

and focus on just two single-particle states. The state-vector is represented by a series of

“slots”, whose order is important at this stage, each containing an occupation number.

Thus |1pσ, 1p′σ′〉 denotes a state in which a particle was put in state (p′σ′) and then a

second particle was added in state (pσ).

Annihilation and creation operators9 âpσ, â
†
pσ are introduced for each state which act

in the following manner:

âpσ|1pσ〉 = |0〉, (2.28)

â†pσ|0〉 = |1pσ〉. (2.29)

In order that the sign of the state is unambiguously defined in this notation, it is neces-

sary for consistency that creation operators act on the right-most void and annihilation

operators act on the left-most appropriately-filled slot.

We now consider the state |1pσ, 1p′σ′〉 and use the exchange operator â†p′σ′ â
†
pσâpσâp′σ′

to obtain the state |1p′σ′ , 1pσ〉, in which particles have been exchanged between state (pσ)

and (p′σ′):

â†p′σ′ â
†
pσâpσâp′σ′|1pσ, 1p′σ′〉 = â†p′σ′ â

†
pσâpσ|1pσ, 0〉 = â†p′σ′ â

†
pσ|0, 0〉

8Berry [13] has recently proposed a non-relativistic explanation involving a geometric phase.
9Neither the creation nor annihilation operators are Hermitian, and so they do not correspond to

physical observables.
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= â†p′σ′|0, 1pσ〉 = |1p′σ′ , 1pσ〉. (2.30)

The initial discussion in this section showed that under this exchange, the wave-function

at most changes sign. This requires that the creation and annihilation operators obey one

of two sets of commutation rules, as we will now show. The first set is due to Bose and

can be summarised by:

[
â†pσ, âp′σ′

]
= δpp′δσσ′ , (2.31)

[âpσ, âp′σ′ ] = 0, (2.32)

where [p̂, q̂] = p̂q̂ − q̂p̂. (2.33)

Under the Bose commutation rules, the two creation operators in the exchange operator,

which refer to different states, commute and so can be swapped, and the result is that

â†p′σ′ â
†
pσâpσâp′σ′ |1pσ, 1p′σ′〉 = |1p′σ′ , 1pσ〉

= â†pσâ
†
p′σ′ âpσâp′σ′ |1pσ, 1p′σ′〉 = |1pσ, 1p′σ′〉 (2.34)

i.e. states describing particles whose creation and annihilation operators obey the Bose

commutation rules (bosons) must have symmetric wave-functions.

The second set of commutation rules, which is due to Fermi, describes fermions :

{
â†pσ, âp′σ′

}
= δpp′δσσ′ , (2.35)

{âpσ, âp′σ′} = 0, (2.36)

where {p̂, q̂} = p̂q̂ + q̂p̂, (2.37)

and gives rise to antisymmetric wave-functions:

â†p′σ′ â
†
pσâpσâp′σ′|1pσ, 1p′σ′〉 = |1p′σ′ , 1pσ〉

= −â†pσâ†p′σ′ âpσâp′σ′|1pσ, 1p′σ′〉 = −|1pσ, 1p′σ′〉. (2.38)

In particular, note that the Fermi rules (equation 2.36 for (pσ) = (p′σ′)) require that

âpσâpσ = â†pσâ
†
pσ = 0 (2.39)

i.e. it is impossible to put more than one fermion in any single-particle state. This result is

known as the Pauli exclusion principle and it is ultimately responsible for the stability of

matter. In an atom, for instance, the Pauli exclusion principle prevents all of the electrons

from falling into the lowest-lying energy level.
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Thus all systems of identical particles must subscribe to one of the sets of rules above:

bosons have symmetric wave-functions and fermions antisymmetric wave-functions.

The second result of the relativistic theory which needs to be considered is the existence

of antiparticles , which have the same mass but opposite charge to their corresponding par-

ticles. The antiparticles are assigned their own set of creation and annihilation operators,

denoted b̂†pσ and b̂pσ respectively, which obey the same commutation rules as the particle

operators.

The creation and annihilation operators can be combined to form a Hermitian product,

the number operator , N̂pσ = â†pσâpσ, so-called because its action is simply to return the

number of particles in state (pσ). For antiparticles, ˆ̄Npσ = b̂†pσ b̂pσ.

Using the method of second quantisation, the Hamiltonian can be written as (see [15]):

Ĥ =
∑
p

∑
σ

ε(p)
(
â†pσâpσ ± b̂pσ b̂

†
pσ

)
(2.40)

where the ε(p) =
√

p2 +m2 are the energies of the single-particle states, and the plus sign

occurs for particles of integral spin and the minus sign for particles with half-integral spin.

We note that the particle creation and annihilation operators occur in the correct order to

be rewritten as the particle number operator, whereas the antiparticle operators are in the

wrong order, so we can use the appropriate set of commutation rules to reverse this order.

The Hamiltonian for free particles must be positive-definite, and therefore turns out to be

of the form

Ĥ =
∑
p

∑
σ

ε(p)
(
N̂pσ + ˆ̄Npσ + 1

)
. (2.41)

The constant
∑

p

∑
σ ε(p) in equation 2.41 represents the energy of the vacuum and is

usually ignored. In order to obtain the Hamiltonian in this form, particles with half-

integral spin (minus sign in 2.40) must have creation and annihilation operators which

anticommute according to the Fermi rules, whereas particles with integral spin (plus sign

in 2.40) must have operators which commute according to the Bose rules.

We thus come to the following conclusions:

• particles with half-integral spin are fermions and have antisymmetric wave-functions,

• particles with integral spin are bosons and have symmetric wave-functions.

In particular, electrons (which have spin 1
2
) are fermions with antisymmetric wave-functions

and obey the Pauli exclusion principle. These consequences of relativistic quantum me-

chanics must be carried over by hand into the non-relativistic theory if we are to correctly

describe nature.
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In this dissertation we will not address the issues which arise in spin-polarised systems,

in which the numbers of electrons in different spin states differ. In our case, it is only

necessary to ensure that the many-body electronic wave-function is antisymmetric under

exchange and that each single-particle state is never more than doubly-occupied (with one

spin “up” electron and one spin “down”).

2.4 Variational principles

In section 2.1 we outlined the basic principles of quantum mechanics, and in particular

noted the rôle of the quantity 〈Ψ|Ô|Ψ〉 as the expectation value of the observable corre-

sponding to the operator Ô. In that section, mention was briefly made of the relationship:

〈Ψ|Ψ〉 =
∑
n

|〈χn|Ψ〉|2 (2.42)

which is simply derived from equations 2.5, 2.6 and 2.8. If we relax the restriction on

orthonormalisation, the expression for the expectation value becomes

〈O〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 . (2.43)

We now consider the expectation value of the Hamiltonian operator for the electrons,

defined in equation 2.19 and reproduced here:

Ĥ|Ψ〉 =


−1

2

∑

i

∇2
i −

∑

i

∑
α

Zα
|ri − rα| +

1

2

∑

i

∑

j 6=i

1

|ri − rj|


 |Ψ〉 = E|Ψ〉 (2.44)

in which the electronic energy is now labelled E, and the dependence on the nuclear

coordinates is suppressed since the nuclei are assumed to be static following the conclusions

of section 2.2. This equation is an eigenvalue equation for a linear Hermitian operator, and

as such can always be recast in the form of finding the stationary points of a functional

subject to a constraint.

Consider the expectation value of the Hamiltonian 〈E〉 = E[Ψ] which is a functional of

the wave-function, and make a small variation to the state-vector: |Ψ〉 → |Ψ〉+ |δΨ〉. The

change in E[Ψ] is given by

δE[Ψ] = E[Ψ + δΨ]− E[Ψ]

=
〈Ψ + δΨ|Ĥ|Ψ + δΨ〉
〈Ψ + δΨ|Ψ + δΨ〉 − 〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉
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=
〈δΨ|Ĥ|Ψ〉+ 〈Ψ|Ĥ|δΨ〉

〈Ψ|Ψ〉 − 〈Ψ|Ĥ|Ψ〉
(〈Ψ|Ψ〉)2 (〈δΨ|Ψ〉+ 〈Ψ|δΨ〉) +O

(
δΨ2

)

=
1

〈Ψ|Ψ〉
[
〈δΨ|

(
Ĥ|Ψ〉 − E[Ψ]|Ψ〉

)
+

{
〈δΨ|

(
Ĥ|Ψ〉 − E[Ψ]|Ψ〉

)}∗]
(2.45)

neglecting changes which are second-order or higher in δΨ in the last line. Thus the

quantity E[Ψ] is stationary (δE[Ψ] = 0) when |Ψ〉 is an eigenstate of Ĥ and the eigenvalue

is E[Ψ],

Ĥ|Ψ〉 = E[Ψ]|Ψ〉 (2.46)

and this equation is the time-independent Schrödinger equation. The eigenvalues of Ĥ

can therefore be found by finding the stationary values of E[Ψ] i.e. finding the stationary

values of 〈Ψ|Ĥ|Ψ〉 subject to the constraint that 〈Ψ|Ψ〉 is constant. In this procedure, the

eigenvalue E plays the rôle of a Lagrange multiplier used to impose the constraint.

In this dissertation we will only be interested in finding the electronic ground-state |Ψ0〉
which is the eigenstate of the Hamiltonian with the lowest eigenvalue E0. Suppose that we

have a state close to the ground-state, but with some small error. Since the eigenstates of

the Hamiltonian form a complete set, the error can be expanded as a linear combination

of the excited eigenstates. The whole state can thus be written as

|Ψ〉 = |Ψ0〉+
∞∑

n=1

cn|Ψn〉 (2.47)

where

Ĥ|Ψn〉 = En|Ψn〉. (2.48)

We now calculate the value of E[Ψ]:

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=
〈Ψ0 +

∑∞
n=1 cnΨn|Ĥ|Ψ0 +

∑∞
n=1 cnΨn〉

〈Ψ0 +
∑∞
n=1 cnΨn|Ψ0 +

∑∞
n=1 cnΨn〉

=
〈Ψ0 +

∑∞
n=1 cnΨn|E0Ψ0 +

∑∞
n=1 cnEnΨn〉

〈Ψ0 +
∑∞
n=1 cnΨn|Ψ0 +

∑∞
n=1 cnΨn〉

=
E0 +

∑∞
n=1 |cn|2En

1 +
∑∞
n=1 |cn|2

= E0 +
∞∑

n=1

|cn|2 (En − E0) +O
(
|cn|4

)
. (2.49)
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By definition, En > E0 for n ≥ 1, so that we note two points:

• E[Ψ] ≥ E0, with equality only when |Ψ〉 = |Ψ0〉 (i.e. cn = 0 for n ≥ 1),

• the error in the estimate of E0 is second-order in the error in the wave-function (i.e.

cn).

The importance of such a variational principle is now clear. To calculate the ground-

state energy E0, we can minimise the functional E[Ψ] with respect to all states |Ψ〉 which

are antisymmetric under exchange of particles. The value of this functional gives an upper

bound to the value of E0, and even a relatively poor estimate of the ground-state wave-

function gives a relatively good estimate of E0. Eigenstates corresponding to excited states

of the Hamiltonian can be found by minimising the functional with respect to states which

are constructed to be orthogonal to all lower-lying states (which is usually achieved by

considering the symmetries of the states) but in this work we will only ever be interested

in the ground-state, and so there are no restrictions on the states other than antisymmetry.



Chapter 3

Quantum Mechanics of the Electron

Gas

In chapter 2, we showed that the quantum mechanics of the electrons and nuclei which

make up real systems can be simplified using the Born-Oppenheimer approximation to

separate the motion of the nuclei and electrons. It is therefore possible to treat the nuclei

as stationary and reduce the problem to that of a gas of interacting electrons moving in a

static external potential due to the nuclei. We also showed that the many-electron wave-

function must be antisymmetric under exchange of particles, and outlined the powerful

variational method for finding the energy eigenvalues of the Hamiltonian.

In this chapter, we will first show how the problem of finding the ground-state en-

ergy can be simplified considerably by the use of density-functional theory, in which the

electronic density, rather than the many-electron wave-function, plays the central rôle.

Furthermore, it is possible to make a mapping from the system of interacting electrons to

a fictitious system of non-interacting particles which has the same ground-state density.

Thus the difficult interacting problem can be transformed into a simpler non-interacting

problem. We will outline the local density approximation for the effects of exchange and

correlation, which allows the theorems of density-functional theory to be applied, and gives

surprisingly good results.

Exploiting these results, we will then describe the treatment of periodic systems, and

conclude the chapter with a discussion of the pseudopotential approximation which elimi-

nates the core electrons and strong nuclear Coulomb potential from the problem.

19
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3.1 Density-functional theory

In this section we will describe the remarkable theorems of density-functional theory (DFT)

which allow us to find ground-state properties of a system without dealing directly with

the many-electron state |Ψ〉. We deal with a system of N electrons moving in a static

potential, and adopt a conventional normalisation in which 〈Ψ|Ψ〉 = N .

3.1.1 The Hohenberg-Kohn theorems

As a result of the Born-Oppenheimer approximation, the Coulomb potential arising from

the nuclei is treated as a static external potential Vext(r):

Vext(r) = −∑
α

Zα
|r− rα| . (3.1)

We define the remainder of the electronic Hamiltonian given in (2.19) as F̂ :

F̂ = −1

2

∑

i

∇2
i +

1

2

∑

i

∑

j 6=i

1

|ri − rj| (3.2)

such that Ĥ = F̂ + V̂ext where

V̂ext =
∑

i

Vext(ri). (3.3)

F̂ is the same for all N -electron systems, so that the Hamiltonian, and hence the ground-

state |Ψ0〉, are completely determined by N and Vext(r). The ground-state |Ψ0〉 for this

Hamiltonian gives rise to a ground-state electronic density n0(r)

n0(r) = 〈Ψ0|n̂|Ψ0〉 =
∫ N∏

i=2

dri |Ψ0 (r, r2, r3 . . . rN)|2 . (3.4)

Thus the ground-state |Ψ0〉 and density n0(r) are both functionals of the number of elec-

trons N and the external potential Vext(r). Density-functional theory, introduced in 1964

by Hohenberg and Kohn [16], makes two remarkable statements.

• The external potential Vext(r) is uniquely determined by the corresponding ground-

state electronic density, to within an additive constant.

Proof by reductio ad absurdum: assume that a second different external potential

V ′
ext(r) with ground-state |Ψ′

0〉 gives rise to the same density n0(r). The ground-

state energies are E0 = 〈Ψ0|Ĥ|Ψ0〉 and E ′
0 = 〈Ψ′

0|Ĥ ′|Ψ′
0〉 where Ĥ = F̂ + V̂ext and

Ĥ ′ = F̂+ V̂ ′
ext. Taking |Ψ′

0〉 as a trial wave-function for the Hamiltonian Ĥ, we obtain
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the strict inequality

E0 < 〈Ψ′
0|Ĥ|Ψ′

0〉 = 〈Ψ′
0|Ĥ ′|Ψ′

0〉+ 〈Ψ′
0|

(
Ĥ − Ĥ ′) |Ψ′

0〉
= E ′

0 +
∫

dr n0(r) [Vext(r)− V ′
ext(r)] , (3.5)

whereas taking |Ψ0〉 as a trial wave-function for Ĥ ′ gives

E ′
0 < 〈Ψ0|Ĥ ′|Ψ0〉 = 〈Ψ0|Ĥ|Ψ0〉+ 〈Ψ0|

(
Ĥ ′ − Ĥ

)
|Ψ0〉

= E0 −
∫

dr n0(r) [Vext(r)− V ′
ext(r)] (3.6)

and adding these two equations together results in the contradiction

E0 + E ′
0 < E0 + E ′

0.

Thus, at least in principle, the ground-state density determines (to within a constant)

the external potential of the Schrödinger equation of which it is a solution. The

external potential and number of electrons N =
∫

dr n0(r) determine all the ground-

state properties of the system since the Hamiltonian and ground-state wave-function

are determined by them.

So for all densities n(r) which are ground-state densities for some external potential

(v-representable) the functional F [n] = 〈Ψ|F̂ |Ψ〉 is unique and well-defined, since

n(r) determines the external potential and N (and therefore F̂ ) and thence |Ψ〉.
Now a functional for an arbitrary external potential V (r) unrelated to the Vext(r)

determined by n(r) can be defined:

EV [n] = F [n] +
∫

dr V (r)n(r). (3.7)

• For all v-representable densities n(r), EV [n] ≥ E0 where E0 is now the ground-state

energy for N electrons in the external potential V (r).

Proof of this energy variational principle: by the first theorem, a given n(r) deter-

mines its own external potential Vext(r) and ground-state |Ψ〉. If this state is used as

a trial state for the Hamiltonian with external potential V (r), we have

〈Ψ|Ĥ|Ψ〉 = 〈Ψ|F̂ |Ψ〉+ 〈Ψ|V̂ |Ψ〉 = F [n] +
∫

dr V (r)n(r) = EV [n] ≥ E0 (3.8)

by the variational principle. For non-degenerate ground-states, equality only holds if

|Ψ〉 is the ground-state for potential V (r).
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Thus the problem of solving the Schrödinger equation for non-degenerate ground-states can

be recast into a variational problem of minimising the functional EV [n] with respect to v-

representable densities. It should be noted that simple counter-examples of v-representable

densities have been found [17–19], but this restriction and the non-degeneracy requirement

are overcome by the constrained search formulation.

3.1.2 The constrained search formulation

Following Levy [20,21] we define a functional of the density n(r) for the operator F̂ (defined

above) as:

F [n] = min
|Ψ〉→n

〈Ψ|F̂ |Ψ〉 (3.9)

i.e. the functional takes the minimum value of the expectation value with respect to all

states |Ψ〉 which give the density n(r). For a system with external potential V (r) and

ground-state |Ψ0〉 with energy E0, consider a state |Ψ[n]〉, an N -electron state which yields

density n(r) and minimises F [n]. Define EV [n] as:

EV [n] = F [n] +
∫

dr n(r)V (r) = 〈Ψ[n]|(F̂ + V̂ )|Ψ[n]〉 (3.10)

but since Ĥ = F̂ + V̂ , by the variational principle we obtain

EV [n] ≥ E0 (3.11)

with equality only if |Ψ[n]〉 = |Ψ0〉. This holds for all densities which can be obtained from

an N -electron wave-function (N -representable). But from the definition of F [n] (3.9) we

must also have

F [n0] ≤ 〈Ψ0|F̂ |Ψ0〉 (3.12)

since |Ψ0〉 must be one of states which yields n0(r). Adding
∫

dr n0(r)V (r) gives

EV [n0] ≤ E0 (3.13)

which when combined with (3.11) gives the desired result that EV [n] ≥ EV [n0] = E0.

Thus the ground-state density n0(r) minimises the functional EV [n] and the mini-

mum value is the ground-state electronic energy. Note that the requirement for non-

degeneracy of the ground-state has disappeared, and further that instead of considering

only v-representable densities, we can now consider N -representable densities. The require-

ments of N -representability are much weaker and satisfied by any well-behaved density,
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indeed the only condition [22] is proper differentiability i.e. that the quantity

∫
dr

∣∣∣∇n 1
2 (r)

∣∣∣
2

is real and finite.

3.1.3 Exchange and correlation

The remarkable results of density-functional theory are the existence of the universal func-

tional F [n], which is independent of the external potential, and that instead of dealing with

a function of 3N variables (the many-electron wave-function) we can instead deal with a

function of only three variables (the density). The complexity of the problem has thus been

much reduced, and we note here that this complexity now scales linearly with system-size

N , so that quantum-mechanical calculations based on density-functional theory can in

principle be performed with an effort which scales linearly with system-size.

The exact form of the universal functional F [n] is unknown. The Thomas-Fermi func-

tional [23–25]

FTF[n] =
3

10

(
3π2

) 2
3

∫
dr n

5
3 (r) +

1

2

∫
dr dr′

n(r)n(r′)
|r− r′| (3.14)

can, with hindsight, be viewed as a tentative approximation to this universal functional, but

fails to provide even qualitatively correct predictions for systems other than isolated atoms

[26,27] although recent, more accurate developments [28–32] have led to the implementation

of linear-scaling orbital-free methods for nearly-free electron metals.

The failure to find accurate expressions for the density-functional is a result of the

complexity of the many-body problem which is at the heart of the definition of the universal

functional. For the electron gas, a system of many interacting particles, the effects of

exchange and correlation are crucial to an accurate description of its behaviour. In a non-

interacting system, the antisymmetry of the wave-function requires that particles with the

same spin occupy distinct orthogonal orbitals, and this results in the particles becoming

spatially separated. In an interacting system such as the electron gas in which all the

particles repel each other, exchange will thus lead to a lowering of the energy. Moreover,

the interactions cause the motion of the particles to become correlated to further reduce

the energy of interaction. Thus it is impossible to treat the electrons as independent

particles. These effects are completely neglected by the Thomas-Fermi model, and must

in part account for its failure, the other source of error being the local approximation for

the kinetic energy.
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3.1.4 The Kohn-Sham equations

In order to take advantage of the power of DFT without sacrificing accuracy (i.e. including

exchange and correlation effects) we follow the method of Kohn and Sham [33] to map the

problem of the system of interacting electrons onto a fictitious system of non-interacting

“electrons”. We write the variational problem for the Hohenberg-Kohn density-functional,

introducing a Lagrange multiplier µ to constrain the number of electrons to be N :

δ
[
F [n] +

∫
dr Vext(r)n(r)− µ

(∫
dr n(r)−N

)]
= 0. (3.15)

Kohn and Sham separated F [n] into three parts

F [n] = Ts[n] +
1

2

∫
dr dr′

n(r)n(r′)
|r− r′| + Exc[n] (3.16)

in which Ts[n] is defined as the kinetic energy of a non-interacting gas with density n(r) (not

the same as that of the interacting system, although we might hope that the two quantities

were of the same order of magnitude), the second term is the classical electrostatic (Hartree)

energy and the final term is an implicit definition of the exchange-correlation energy which

contains the non-classical electrostatic interaction energy and the difference between the

kinetic energies of the interacting and non-interacting systems. The aim of this separation

is that the first two terms can be dealt with simply, and the last term, which contains

the effects of the complex behaviour, is a small fraction of the total energy and can be

approximated surprisingly well.

Using this separation, equation 3.15 can be rewritten:

δTs[n]

δn(r)
+ VKS(r) = µ (3.17)

in which the Kohn-Sham potential VKS(r) is given by

VKS(r) =
∫

dr′
n(r′)
|r− r′| + Vxc(r) + Vext(r) (3.18)

and the exchange-correlation potential Vxc(r) is

Vxc(r) =
δExc[n]

δn(r)
. (3.19)

The crucial point to note here is that equation 3.17 is precisely the same equation which

would be obtained for a non-interacting system of particles moving in an external potential

VKS(r). To find the ground-state density n0(r) for this non-interacting system we simply
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solve the one-electron Schrödinger equations;

[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) (3.20)

for 1
2
N single-particle states1 |ψi〉 with energies εi, constructing the density from

n(r) = 2
N/2∑

i=1

|ψi(r)|2 (3.21)

(the factor 2 is for spin degeneracy – we assume the orbitals are singly-occupied) and the

non-interacting kinetic energy Ts[n] from

Ts[n] = −
N/2∑

i=1

∫
dr ψ∗i (r)∇2ψi(r). (3.22)

Since the Kohn-Sham potential VKS(r) depends upon the density n(r) it is necessary to

solve these equations self-consistently i.e. having made a guess for the form of the density,

the Schrödinger equation is solved to obtain a set of orbitals {ψi(r)} from which a new

density is constructed, and the process repeated until the input and output densities are

the same. In practice there is no problem converging to the ground-state minimum because

of the convex nature of the density-functional [34].

The energy of the non-interacting system, the sum of one-electron eigenvalues, is

2
N/2∑

i=1

εi = Ts[n] +
∫

dr n(r)VKS(r)

= Ts[n] +
∫

dr dr′
n(r)n(r′)
|r− r′| +

∫
dr n(r)Vxc(r) +

∫
dr n(r)Vext(r) (3.23)

which, compared to the interacting system, double-counts the Hartree energy and over-

counts the exchange-correlation energy so that the interacting energy is

E = 2
N/2∑

i=1

εi − 1

2

∫
dr dr′

n(r)n(r′)
|r− r′| −

∫
dr n(r)Vxc(r) + Exc[n]. (3.24)

Direct solution of the Schrödinger equation for the extended non-interacting orbitals

{ψi(r)} requires a computational effort which scales as the cube of the system-size N , due

to the cost of diagonalising the Hamiltonian or orthogonalising the orbitals, whereas the

original complexity of finding a minimum of the Hohenberg-Kohn functional only required

an effort which scaled linearly with N . Thus a linear-scaling method must modify this

1Our restriction to non-spin-polarised systems requires that N be even.
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Kohn-Sham scheme.

3.1.5 The local density approximation

The results so far are exact, provided that the functional form of Exc[n] is known. The prob-

lem of determining the functional form of the universal Hohenberg-Kohn density functional

has now been transferred to this one term, and therefore this term is not known exactly.

Remarkably, it is possible to make simple approximations for the exchange-correlation en-

ergy which work extremely well, and the simplest of these, which is the approximation

adopted in this work, is the local density approximation (LDA).

In the LDA, the contribution to the exchange-correlation energy from each infinitesimal

volume in space, dr, is taken to be the value it would have if the whole of space were filled

with a homogeneous electron gas with the same density as is found in dr i.e.

Exc[n] =
∫

dr εxc (n(r))n(r) (3.25)

where εxc (n(r)) is the exchange-correlation energy per electron in a homogeneous electron

gas of density n(r). The exchange-correlation potential Vxc(r) then takes the form

Vxc(r) =
δExc[n]

δn(r)
= εxc (n(r)) + n(r)

dεxc (n)

dn

∣∣∣∣∣
n=n(r)

. (3.26)

The exchange-correlation energy for the homogeneous electron gas has been calculated

by Ceperley and Alder [35] using Monte Carlo methods and in this work we use a param-

eterisation by Perdew and Zunger [36]. The LDA is exact in the limit of slowly-varying

densities, however, the density in systems of interest is generally rapidly varying, and the

LDA would appear to be a crude approximation in these cases. Its use is justified a posteri-

ori by its surprising success at predicting physical properties in real systems. This success

may be due in part to the fact that the sum rule for the exchange-correlation hole, which

must be obeyed by the real functional, is reproduced by the LDA [37]. We can connect the

interacting and non-interacting systems using a variable coupling constant λ which varies

between 0 and 1. We replace the Coulomb interaction by

λ

|r− r′|

and vary λ in the presence of an external potential Vλ(r) so that the ground-state density
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for all values of λ is the same [38]. The Hamiltonian is therefore

Ĥλ = −1

2

∑

i

∇2
i +

1

2

∑

i

∑

j 6=i

λ

|ri − rj| + V̂ext + V̂λ. (3.27)

The exchange-correlation hole nxc(r, r
′) is then defined in terms of a coupling-constant

integration of the pair correlation function g(r, r′;λ) of the system with density n(r) and

scaled Coulomb interaction [39,40];

nxc(r, r
′) = n(r′)

∫ 1

0
dλ [g(r, r′;λ)− 1] . (3.28)

The exchange-correlation energy can then be expressed in the form of a classical electro-

static interaction between the density n(r) and the hole density nxc(r, r
′);

Exc[n] =
1

2

∫
dr dr′

n(r)nxc(r, r
′)

|r− r′| . (3.29)

The sum rule follows from the definition of the pair correlation function [41]

∫
dr′ nxc(r, r

′) = −1, (3.30)

which is interpreted by saying that the exchange-correlation hole excludes one electron as

expected. It can also be shown that the exchange-correlation energy depends only weakly

on the detailed shape of the exchange-correlation hole [42], and these two facts account,

at least in part, for the success of the LDA. This view is supported by the fact that

improvements to the LDA involving gradient expansions show no consistent improvement

unless they enforce the sum rule obeyed by the LDA [43,44].

3.2 Periodic systems

Exploiting the results of the previous section, we can now consider the motion of non-

interacting particles in a static potential, which is described by the time-independent

Schrödinger equation 3.20. In the study of bulk crystals, the system is infinite but pe-

riodic, and so it is necessary to be able to reduce this problem to the study of a finite

system. This approach turns out to have several advantages so that it is often easiest to

study even aperiodic systems by imposing some false periodicity. The system is contained

within a supercell which is then replicated periodically throughout space (see figure 3.1).

The supercell must be large enough so that the systems contained within each one, which

in reality are isolated, do not interact significantly.
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A

Figure 3.1: Using the supercell approximation, an isolated molecule can be studied
using the same techniques which are usually applied to crystals.

3.2.1 Bloch’s theorem

See [45] for a fuller discussion of the proof outlined here. We consider non-interacting

particles moving in a static potential V (r), which may be the Kohn-Sham effective potential

VKS(r) (3.18). In a perfect crystal, the nuclei are arranged in a regular periodic array

described by a set of Bravais lattice vectors {R}. The system, being infinite, is invariant

under translation by any of these lattice vectors, and in particular the potential is also

periodic i.e.

V (r + R) = V (r) (3.31)

for all Bravais lattice vectors R.

The Schrödinger equation which describes the motion of a single particle in this poten-

tial is

Ĥ|ψ〉 =
[
−1

2
∇2 + V (r)

]
|ψ〉 = ε|ψ〉 (3.32)

and we define translation operators T̂R for each lattice vector R which act in the following

manner on any function of position f(r):

T̂Rf(r) = f(r + R). (3.33)

Since the potential and hence the Hamiltonian are periodic i.e. Ĥ(r+R) = Ĥ(r), these
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operators commute with the translation operators:

T̂RĤ(r)ψ(r) = Ĥ(r + R)ψ(r + R) = Ĥ(r)ψ(r + R) = Ĥ(r)T̂Rψ(r) (3.34)

i.e.
[
Ĥ, T̂R

]
= 0, and the translation operators commute with each other i.e. T̂RT̂R′ =

T̂R′T̂R = T̂R+R′ .

There must, therefore, exist a good quantum number corresponding to each lattice

vector R, and it must also be possible to choose the eigenstates of the Hamiltonian to be

simultaneous eigenstates of all the translation operators;

Ĥ|ψ〉 = ε|ψ〉, (3.35)

T̂R|ψ〉 = c(R)|ψ〉. (3.36)

From the commutation relations of the translation vectors it follows that the eigenvalues

must satisfy

c(R + R′) = c(R)c(R′). (3.37)

We can define the eigenvalues for the three primitive lattice vectors {ai} in terms of three

complex numbers {xi} by

c(ai) = exp(2πixi). (3.38)

Since all lattice vectors can be expressed in the form R = n1a1 + n2a2 + n3a3, where the

ni are integers, it follows from equation 3.37 that

c(R) = c(a1)
n1c(a2)

n2c(a3)
n3 (3.39)

which is equivalent to

c(R) = exp(ik ·R), (3.40)

k = x1g1 + x2g2 + x3g3, (3.41)

where the {gi} are the reciprocal lattice vectors satisfying gi · aj = 2πδij, and the {xi} are

complex numbers in general.

Thus we have shown that

T̂Rψ(r) = ψ(r + R) = c(R)ψ(r) = exp(ik ·R)ψ(r) (3.42)
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which is one statement of Bloch’s theorem. Consider the function u(r) = exp(−ik · r)ψ(r).

u(r + R) = exp(−ik · [r + R])ψ(r + R) = exp(−ik · r)ψ(r) = u(r) (3.43)

i.e. the function u(r) also has the periodicity of the lattice, and so the wave-function ψ(r)

can also be expressed as

ψ(r) = exp(ik · r)u(r), (3.44)

where u(r) is a strictly cell-periodic function i.e. u(r + R) = u(r).

We thus label the eigenstates of the Hamiltonian and the translation operators |ψnk〉
where n is the good quantum number labelling different eigenstates of the Hamiltonian

with the same good quantum vector k, related to the translational symmetry.

At this point we note that a periodic function can always be expressed as a Fourier

series i.e.

u(r) =
∑

G

ũG exp(iG · r) (3.45)

where G is reciprocal lattice vector G = m1g1 + m2g2 + m3g3 and the mi are integers.

Thus the state |ψnk〉 can be expressed as a linear combination of plane-waves:

ψnk(r) = exp(ik · r)unk(r) (3.46)

=
∑

G

cnk(G) exp[i(k + G) · r]. (3.47)

Instead of having to solve for a wave-function over all of (infinite) space, the problem

now becomes one of solving for wave-functions only within a single (super)cell, albeit with

an infinite number of possible values for k. In order to simplify the problem to manageable

proportions, it is necessary to impose some boundary conditions on the wave-function,

which restrict the allowed values of k.

3.2.2 Brillouin zone sampling

We choose to model the infinite periodic system by a large number of primitive cells Ncells =

N1N2N3 stacked together, with Ni cells along the ai direction, and we apply periodic or

generalised Born-von Karman boundary conditions to the wave-functions, which can be

interpreted by saying that a particle which leaves one surface of the crystal simultaneously

enters the crystal at the opposite surface. In fact it can be shown [46] that the choice of

boundary conditions does not affect the bulk properties of the system. This condition is
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expressed mathematically as

ψ(r +Niai) = ψ(r), i = 1, 2, 3. (3.48)

Applying Bloch’s theorem (3.42) gives

ψ(r +Niai) = exp(iNik · ai)ψ(r) (3.49)

so that the values of k are restricted such that

exp(iNik · ai) = exp(2πiNixi) = 1, i = 1, 2, 3 (3.50)

using equation 3.41. Therefore the values of the {xi} are required to be real and equal to

xi =
li
Ni

, i = 1, 2, 3, (3.51)

where the {li} are integers, so that the general allowed form for the Bloch wave-vectors k

is

k =
3∑

i=1

li
Ni

gi. (3.52)

Taking the limit to the true infinite perfect crystal (Ni →∞) we see that there is still

an infinite number of allowed k-vectors, but that they are now members of a countably

infinite set. Furthermore, we see that k-vectors which differ only by a reciprocal lattice

vector are in fact equivalent. Consider two such wave-vectors related by k′ = k + G, then

the corresponding Bloch states are also related by

ψnk′(r) = exp(ik′ · r)unk′(r) = exp(ik · r) [unk′(r) exp(iG · r)]
= exp(ik · r)ũ(r) = ψn′k(r). (3.53)

Since the expression in square brackets on the first line is a cell-periodic function the

whole expression is a valid Bloch wave-function with wave-vector k. Thus we can restrict

our attention to those k-vectors which lie within the first Brillouin zone, that volume of

reciprocal-space enclosing the origin which is bounded by the planes which perpendicularly

bisect lines from the origin to surrounding lattice points.

The situation now is that for each allowed k-vector within the first Brillouin zone we

must calculate the occupied Hamiltonian eigenstates in order to construct the density.

However, the wave-functions and other properties such as Hamiltonian eigenvalues vary

smoothly over the Brillouin zone [47] so that in practice only a finite set of points need to
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be chosen, and methods for making efficient choices have been developed [48–53]. From

the calculation of the wave-functions at a certain set of k-points, k ·p perturbation theory

[54,55] can be used to approximate the wave-functions at other nearby k-points.

In this work, we are interested in the behaviour of very large systems. The volume of

the Brillouin zone ΩBZ is related to the volume of the supercell Ωcell by

ΩBZ =
(2π)3

Ωcell

(3.54)

so that for large systems, the Brillouin zone volume is very small and only a few k-points

need to be considered to describe the variation across the Brillouin zone accurately. In this

work we therefore only calculate the wave-functions at the centre of the Brillouin zone,

k = 0, known as the Γ-point. This has the added advantage that at this k-point the

wave-functions can be chosen to be real (recall that there is always an arbitrary global

phase factor) without loss of generality.

3.3 The pseudopotential approximation

In this section we outline a further approximation which is based upon the observation

that the core electrons are relatively unaffected by the chemical environment of an atom.

Thus we assume that their (large) contribution to the total binding energy does not change

when isolated atoms are brought together to form a molecule or crystal. The actual energy

differences of interest are the changes in valence electron energies, and so if the binding

energy of the core electrons can be subtracted out, the valence electron energy change will

be a much larger fraction of the total binding energy, and hence much easier to calculate

accurately. We also note that the strong nuclear Coulomb potential and highly localised

core electron wave-functions are difficult to represent computationally.

Since the atomic wave-functions are eigenstates of the atomic Hamiltonian, they must

all be mutually orthogonal. Since the core states are localised in the vicinity of the nucleus,

the valence states must oscillate rapidly in this core region in order to maintain this orthog-

onality with the core electrons. This rapid oscillation results in a large kinetic energy for

the valence electrons in the core region, which roughly cancels the large potential energy

due to the strong Coulomb potential. Thus the valence electrons are much more weakly

bound than the core electrons.

It is therefore convenient to attempt to replace the strong Coulomb potential and core

electrons by an effective pseudopotential which is much weaker, and replace the valence elec-

tron wave-functions, which oscillate rapidly in the core region, by pseudo-wave-functions ,

which vary smoothly in the core region [56, 57]. We outline two justifications for this
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approximation below; for further details see [58] and also [59,60] for recent reviews.

−Zeff

r

Vps

ψ

ψps

rc
r

Figure 3.2: Schematic diagram of the relationship between all-electron and pseudo-
potentials and wave-functions.

3.3.1 Operator approach

Following the orthogonalised plane-waves approach [61], we consider an atom with Hamil-

tonian Ĥ, core states {|χn〉} and core energy eigenvalues {En} and focus on one valence

state |ψ〉 with energy eigenvalue E. From these states we attempt to construct a smoother

pseudo-state |ϕ〉 defined by

|ψ〉 = |ϕ〉+
core∑
n

an|χn〉. (3.55)

The valence state must be orthogonal to all of the core states (which are of course

mutually orthogonal) so that

〈χm|ψ〉 = 0 = 〈χm|ϕ〉+ am (3.56)

which fixes the expansion coefficients {an}. Thus

|ψ〉 = |ϕ〉 −
core∑
n

|χn〉〈χn|ϕ〉. (3.57)

Substituting this expression in the Schrödinger equation Ĥ|ψ〉 = E|ψ〉 gives

Ĥ|ϕ〉 −
core∑
n

En|χn〉〈χn|ϕ〉 = E|ϕ〉 − E
∑
n

|χn〉〈χn|ϕ〉 (3.58)
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which can be rearranged in the form

Ĥ|ϕ〉+
core∑
n

(E − En)|χn〉〈χn|ϕ〉 = E|ϕ〉 (3.59)

so that the smooth pseudo-state obeys a Schrödinger equation with an extra energy-

dependent non-local potential V̂nl;

[
Ĥ + V̂nl

]
|ϕ〉 = E|ϕ〉 (3.60)

V̂nl =
core∑
n

(E − En)|χn〉〈χn|. (3.61)

The energy of the smooth state described by the pseudo-wave-function is the same as

that of the original valence state. The additional potential Vnl, whose effect is localised

in the core, is repulsive and will cancel part of the strong Coulomb potential so that the

resulting sum is a weaker pseudopotential. Of course, once the atom interacts with others,

the energies of the eigenstates will change, but if the core states are reasonably far from the

valence states in energy (i.e. δE ¿ E − En) then fixing E in Vnl to be the atomic valence

eigenvalue is a reasonable approximation. In fact we would like to make the behaviour of

the pseudopotential follow that of the real potential to first order in E, and this can be

achieved by constructing a norm-conserving pseudopotential (see section 3.3.3).

3.3.2 Scattering approach

For a fuller discussion of the theory of scattering see [62]. Consider a plane-wave with wave-

vector k scattering from some spherically-symmetric potential localised within a radius rc

and centred at the origin. The incoming plane-wave can be decomposed into spherical-

waves by the identity

exp(ik · r) = 4π
∞∑

`=0

∑̀

m=−`
i`j`(kr)Y

∗
`m(k̂)Y`m(r̂) (3.62)

where k̂ denotes a unit vector in the direction of k. These spherical- or partial-waves

are then elastically scattered by the potential which introduces a phase-shift δ`, which is

related to the logarithmic derivative of the exact radial solution for given ` and energy

E = 1
2
k2 within the core, evaluated on the surface of the core region:

L`(E) =

[
d

dr
log[R`(r, E)]

]

r=rc

=
R`

′(rc, E)

R`(rc, E)
= k

j`
′(krc)− tan(δ`)n`

′(krc)
j`(krc)− tan(δ`)n`(krc)

. (3.63)
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j` and n` denote the spherical Bessel and von Neumann functions respectively, and the

radial wave-function R`(r, E) is related to the solution of the Schrödinger equation with

angular momentum state determined by the good quantum numbers ` and m, and energy

E, within the core region, ψ`m(r, E) by

ψ`m(r, E) = R`(r, E)Y`m(r̂). (3.64)

The phase-shifted spherical-waves can then be recombined to form the total scattered wave.

We can define a reduced phase-shift η` by

δ` = n`π + η` (3.65)

which has the same effect (the scattering amplitude depends on exp(2iδ`) so that factors

of π in δ` have no effect) and fix n` by requiring η` to lie in the interval 0 ≤ η` ≤ π. The

integer n` counts the number of radial nodes in R`(r, E), two in the case of figure 3.2, and

is thus equal to the number of core states with angular momentum `.

The pseudopotential is then defined as the potential whose complete phase-shifts are

the reduced shifts η` so that the radial pseudo-wave-function has no nodes and thus the

potential has no core states. The scattering effect of this potential is the same as the

original potential. We note again the energy-dependence of the phase-shifts so that for a

good approximation it will be necessary to match these phase-shifts to first order in the

energy so that it is accurate over a reasonable range of energies, a property which results in

good transferability of the pseudopotential i.e. it is accurate in a variety of different chemical

environments. The non-local nature is also exhibited since different angular momentum

states are scattered differently.

3.3.3 Norm conservation

The conditions of a good pseudopotential are that it reproduces the logarithmic derivative

of the wave-function (and thus the phase-shifts) correctly for the isolated atom, and also

that the variation of this quantity with respect to energy is the same to first order for

pseudopotential and full potential2. Having replaced the full potential by a pseudopoten-

tial, we can once again solve the Schrödinger equation in the core region to obtain the

pseudo-wave-function, with radial part Rps,`(r, E).

Pseudopotential generation has itself been the subject of a great deal of study in the

past (see [65–73]) and in this work we have chosen to use those pseudopotentials generated

2The chemical hardness has been proposed as a quantity which gives a more reliable indication of
pseudopotential transferability since it includes self-consistent effects [63,64].
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by the method of Troullier and Martins [74]. With one notable exception [75], all of the

recent methods have used norm-conservation to guarantee that the phase-shifts are correct

to first order in the energy (correction to higher orders is also possible [76]).

Consider the following second-order ordinary differential equations which are eigenvalue

equations for the same differential operator but with different eigenvalues:

y1
′′(x) + p(x)y1

′(x) + q(x)y1(x) = λ1y1(x)

y2
′′(x) + p(x)y2

′(x) + q(x)y2(x) = λ2y2(x). (3.66)

In the context of homogeneous differential equations, the quantity known as the Wronskian

is defined by

W (x) = y1(x)y2
′(x)− y2(x)y1

′(x) (3.67)

and can be calculated according to

W (x) = W0 exp
[
−

∫ x

dx′p(x′)
]

(3.68)

in which the constant W0 is arbitrary and of no consequence.

Following a similar analysis which leads to equation 3.68 for the quantity defined in

equation 3.67 but for the functions which solve equations 3.66 we obtain

W (x) =

[
(λ2 − λ1)

∫ x

dx′y1(x
′)y2(x

′) exp

[∫ x′

dx′′p(x′′)

]
+W0

]
exp

[
−

∫ x

dx′p(x′)
]

(3.69)

and note that the Wronskian can also be rewritten in terms of logarithmic derivatives:

W (x) = y1(x)y2(x)
d

dx

{
log[y2(x)]− log[y1(x)]

}
. (3.70)

Using equations 3.69 and 3.70 in the case of the Schrödinger equation for the radial wave-

function R`(r, E), by making the replacements

x→ r ; p(x) → 2

r
; q(x) → −2

[
V (r) +

`(`+ 1)

r2

]
; λ→ −2E,

and using limits r = 0, rc we obtain

[
r2R`,1(r)R`,2(r)

d

dr
{log[R`,2(r)]− log[R`,1(r)]}

]rc

0

= −2(E2 − E1)
∫ rc

0
dr r2R`,1(r)R`,2(r).

(3.71)

Rearranging, multiplying by −2π and noting that the lower limit on the left-hand side
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contributes nothing because of the r2 factor:

−2πr2
c

R`,1(rc)R`,2(rc)

E2 − E1

d

dr

[
log[R`,2(r)]− log[R`,1(r)]

]
r=rc

= 4π
∫ rc

0
dr r2R`,1(r)R`,2(r).

(3.72)

Finally, taking the limit E2 → E1 so that R`,2(r) → R`,1(r) and interpreting the left-hand

side as a derivative with respect to energy we obtain the desired result:

−2πr2
cR

2
` (rc)

d

dE

[
d

dr
log[R`(r)]

]

r=rc

= 4π
∫ rc

0
dr r2R2

` (r) (3.73)

i.e. the first energy-derivative of the logarithmic derivative evaluated at the core radius

(and hence the phase-shift) is related directly to the norm of the radial wave-function

within the core region. Thus if the pseudo-wave-function is norm-conserving such that

4π
∫ rc

0
dr r2R2

` (r) = 4π
∫ rc

0
dr r2R2

ps,`(r) (3.74)

then the phase-shifts of the pseudopotential will be the same as those of the real potential

to first order in energy, and this can be achieved by making the pseudo-wave-function

identical to the original all-electron wave-function outside the core region.

3.3.4 Kleinman-Bylander representation

We have seen that it is necessary to use a non-local pseudopotential to accurately repre-

sent the combined effect of nucleus and core electrons, since different angular momentum

states (partial waves) are scattered differently. In general we can express the non-local

pseudopotential in semi-local form

V̂ps = V̂loc +
∑

`

∑̀

m=−`
|`m〉δV̂`〈`m| (3.75)

in which |`m〉 denotes the spherical harmonic Y`m. The choice of local potential V̂loc is

arbitrary, but in general the sum over ` is truncated at a small value (e.g. ` = 2) so that

the local part is required to represent the potential which acts on higher angular momentum

components.

This semi-local form suffers from the disadvantage that it is computationally very ex-

pensive to use, since the number of matrix elements which need to be calculated scales as

the square of the number of basis states, and this is generally too costly. In section 5.6.1 we

will describe how this problem can be overcome analytically with a certain set of localised

basis functions, but the most common solution, and one which we have also implemented
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for consistency, is to use the Kleinman-Bylander separable form [77]

V̂KB = V̂loc +
∑

`m

|δV̂`φ`m〉〈φ`mδV̂`|
〈φ`m|δV̂`|φ`m〉

(3.76)

where |φ`m〉 is an eigenstate of the atomic pseudo-Hamiltonian. This operator acts on this

reference state in an identical manner to the original semi-local operator V̂ps so that it is

conceptually well-justified, but now the number of projections which need to be performed

scales only linearly with the number of basis states. This separable form can in fact be

viewed as the first term of a complete series [78].



Chapter 4

Density-Matrix Formulation

Density-functional theory together with the pseudopotential approximation has established

itself as the method of choice for performing large-scale ab initio quantum-mechanical cal-

culations. In particular, the fact that the kinetic energy operator is diagonal in momentum-

space, that the Hartree and local pseudopotential contributions are straightforward to cal-

culate in momentum-space, the development of fast Fourier transforms (FFTs) to efficiently

switch between momentum-space and real-space and their natural relation to periodic

boundary conditions (3.47) has led the plane-wave basis set and momentum-space formal-

ism to become the most widely accepted method for performing such calculations [79,80].

Efficient methods to solve the Kohn-Sham equations have been developed [81–83] which

iteratively diagonalise the Hamiltonian. All of these plane-wave methods require a com-

putational effort which scales as the cube of the system-size, and an amount of memory

which scales as the square. Although these methods have made first-principles quantum-

mechanical calculations available as a tool to a wide range of scientists in a variety of

disciplines, this scaling ultimately limits the maximum system-size which can be treated

now and in the near future, despite the rapid development of computer technology. A

method which requires an effort and amount of memory which scales linearly with system-

size would push the boundaries back much further, and so it is to the development of such

a method that we now turn our attention.

There has been a great deal of success in developing linear-scaling tight-binding meth-

ods [84–88], but full density-functional methods have proved far more elusive. The first

approach was the “divide and conquer” method [89–91] in which the large system is parti-

tioned into overlapping subsystems. The original formulation divides the electronic density

between these subsystems, solving for each in turn until self-consistency is reached. More

recently, the density-matrix has been divided instead of the density [92] and these methods

have been applied to large molecular systems [93, 94]. The recursion method [95, 96] has

39
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been used in a linear-scaling scheme to determine the electronic density by calculating

diagonal elements of the Green’s function [97]. Still other methods focus on the density

of states, which could be used to obtain total energies by integrating up to the chemical

potential [98–101].

As already mentioned, attempts to construct approximations for the density-functional

itself have led to linear-scaling methods for metals [29,31,32]. Electronic structure methods

suitable for metallic systems based upon the multiple scattering method have also been

proposed [102–104].

The Fermi operator expansion method calculates the density-matrix at finite temper-

ature in terms of a Chebychev expansion [105–108] or a rational representation [106, 109–

111]. The closely related kernel polynomial method [112, 113] expands the zero tempera-

ture Fermi distribution by integrating an expansion of the delta function in which damping

factors are used to suppress Gibbs oscillations.

One method related to the density-matrix schemes discussed next is based on a for-

mulation of Kohn-Sham theory in terms of non-orthogonal localised orbitals [114]. A new

energy functional of these localised orbitals which naturally leads to orthogonal orbitals at

its minimum (which is the same as the ground-state minimum of the conventional func-

tional) is introduced [115–121] and allows a linear-scaling method to be constructed, which

has been used to study extended defects in silicon [122]. For a review of these methods

and an explanation of their relationship to the density-matrix schemes, see [123].

The method most closely related to the approach introduced in this dissertation is

the density-matrix minimisation method. The total energy is minimised with respect to

the density-matrix and the purifying transformation (section 4.4.4) is used to impose the

idempotency constraint [124–129].

In this chapter we introduce the concept of the density-matrix and show how it can be

applied to the system of non-interacting particles in density-functional theory. We then

show how a linear-scaling method results naturally from the short-ranged nature of the

density-matrix in real-space, and discuss the constraints which must be imposed in order

to find the ground-state.

4.1 The density-matrix

In section 2.1 we laid down the fundamental principles of quantum mechanics in terms

of wave-functions and operators. In practice, however, we often do not know the precise

quantum-mechanical state of the system, but have some statistical knowledge about the

probabilities for the system being in one of a set of states (note that these probabilities are

completely distinct from the probabilities which arise when a measurement is made). For
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a fuller discussion of what follows, see [130].

Suppose that there is a set of orthonormal states {|ψi〉} for our system, and that the

probabilities that the system is in each of these states are {wi}. The expectation value of

an observable O is

〈O〉stat =
∑

i

wi〈ψi|Ô|ψi〉 (4.1)

which is a quantum and statistical average.

We define the density-operator as

ρ̂ =
∑

i

wi|ψi〉〈ψi| (4.2)

and introduce a complete set of basis states {|φi〉}, writing the {|ψi〉} as linear combina-

tions:

|ψi〉 =
∑

j

c
(i)
j |φj〉. (4.3)

Expressed in terms of this basis, the expectation value becomes

〈O〉stat =
∑

i

wi
∑

j

c
(i)
j

∗〈φj|Ô
∑

k

c
(i)
k |φk〉

=
∑

j

∑

k

[∑

i

c
(i)
j

∗
wic

(i)
k

]
〈φj|Ô|φk〉

=
∑

j

∑

k

ρkjOjk = Tr(ρO) (4.4)

in which the density-matrix ρkj, the matrix representation of the density-operator in this

basis, is defined by

ρkj =
∑

i

c
(i)
j

∗
wic

(i)
k = 〈φk|ρ̂|φj〉. (4.5)

The fact that the probabilities must sum to unity is expressed by the fact that the trace

of the density-matrix is also unity i.e. Tr(ρ) = 1. A state of the system which corresponds

to a single state-vector (i.e. when wi = 1 and wj = 0 ∀ j 6= i) is known as a pure state and

for such a state the density-matrix obeys a condition known as idempotency i.e. ρ2 = ρ

which is only obeyed by matrices whose eigenvalues are all zero or unity. The more general

state introduced above is known as a mixed state and does not obey the idempotency

condition. Other properties of the density-matrix are that it is Hermitian, and that in all

representations the diagonal elements are always real and lie in the interval [0, 1].
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4.2 Partial occupation of the Kohn-Sham orbitals

In the Kohn-Sham scheme, the single-particle orbitals {|ψi〉} were either empty or doubly

occupied (two spin states). It will prove to be useful if we now generalise to include

partial occupation [131] so that each orbital contains 2fi electrons where 0 ≤ fi ≤ 1. The

electronic density is now defined as

n(r) = 2
∑

i

fi |ψi(r)|2 . (4.6)

Following the constrained search formulation we now define a generalised non-interacting

kinetic energy functional T J
s [n] as

T J
s [n] = min

{fi},{|ψi〉}→n
2

∑

i

fi

∫
dr ψ∗i (r)

(
−1

2
∇2

)
ψi(r) (4.7)

where the search is over all orthonormal orbitals {|ψi〉} and occupation numbers {fi} which

yield the density n(r) (which implies that 2
∑
i fi = N).

Janak’s functional is defined as

EJ
V [{fi}, {|ψi〉}] = 2

∑

i

fi

∫
dr ψ∗i (r)

(
−1

2
∇2

)
ψi(r) + EH[n] + EJ

xc[n] +
∫

dr n(r)Vext(r).

(4.8)

The minimisation is now performed with respect to both the occupation numbers {fi} and

the orbitals {|ψi〉}.
For a fixed set of occupation numbers, the Euler-Lagrange equations for the variation

of the functional with respect to the orbitals again yield Schrödinger-like equations:

[
−1

2
fi∇2 + fiVKS(r)

]
ψi(r) = λiψi(r) (4.9)

in which we can identify λi = fiεi to obtain the Kohn-Sham equations

[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r). (4.10)

Multiplying by ψ∗i (r) and integrating gives

∫
dr ψ∗i (r)

(
−1

2
∇2

)
ψi(r) +

∫
dr |ψi(r)|2 VKS(r) = εi. (4.11)

We obtain the dependence of the energy functional on the occupation numbers by

varying one of the {fi} while allowing the orbitals to relax (i.e. solving equations 4.6 and
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4.10 self-consistently). We define the kinetic energy for orbital i, ti, by

ti =
∫

dr ψ∗i (r)
(
−1

2
∇2

)
ψi(r) (4.12)

in terms of which the generalised kinetic energy functional T J
s [n] is

T J
s [n] = 2

∑

i

fi ti. (4.13)

Then

∂EJ
V

∂fi
= 2ti + 2

∑

j

fj
∂tj
∂fi

+ 2
∫

dr VKS(r)


|ψi(r)|2 +

∑

j

fj
∂ |ψj(r)|2

∂fi


 . (4.14)

Using equation 4.11 we can rewrite the terms not involving a summation over orbitals:

∂EJ
V

∂fi
= 2εi + 2

∑

j

fj

(
∂tj
∂fi

+
∫

dr VKS(r)
∂ |ψj(r)|2

∂fi

)
. (4.15)

From the definition of tj (4.12) we obtain

∂tj
∂fi

=
∫

dr

[
∂ψ∗j (r)

∂fi

(
−1

2
∇2

)
ψj(r) + ψ∗j (r)

(
−1

2
∇2

) ∂ψj(r)
∂fi

]
. (4.16)

Substituting this result in equation 4.15 we obtain for the second term on the right-hand

side

2
∑

j

fj

∫
dr

[
∂ψ∗j (r)

∂fi

(
−1

2
∇2 + VKS(r)

)
ψj(r) + ψ∗j (r)

(
−1

2
∇2 + VKS(r)

) ∂ψj(r)
∂fi

]
. (4.17)

Now using equation 4.10 we find

∂EJ
V

∂fi
= 2εi + 2

∑

j

fjεj
∂

∂fi

∫
dr |ψj(r)|2 . (4.18)

The second term on the right-hand side vanishes since the orbitals are normalised and so

the final result is that
∂EJ

V

∂fi
= 2εi. (4.19)

Variation of the functional subject to the constraint of constant electron number (i.e.

unconstrained variation of EJ
V − µN) gives

δ[EJ
V − µN ] = 2

∑

i

(εi − µ)δfi. (4.20)
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This generalised functional is not variational with respect to arbitrary variations in the

occupation numbers [132]. Objections have been raised [133] to considering occupation

numbers other than zero or one in zero-temperature density-functional theory, but the

conclusion is still that at self-consistency, orbitals above the Fermi energy are unoccupied

and orbitals below are fully occupied, and we recall that this state of affairs corresponds

to an idempotent density-matrix.

If the occupation numbers are allowed to vary in the interval [0, 1] we see that the

lowest value of the generalised functional is obtained for the correct choice of occupation

numbers outlined above. However, if the occupation numbers are allowed to vary outside

this interval, this result no longer holds since the energy can be lowered by over-filling

(fi → ∞) orbitals below the Fermi level, or negatively filling (fi → −∞) orbitals above

the Fermi level, while still keeping the sum of the occupation numbers correct. Constraining

the occupation numbers to avoid these unphysical situations is discussed in section 4.4.

4.3 Density-matrix DFT

We consider a system with a set of orthonormalised orbitals {|ψi〉} and occupation numbers

{fi}. The single-particle density-operator ρ̂ is defined by

ρ̂ =
∑

i

fi|ψi〉〈ψi| (4.21)

and the density-matrix in the coordinate representation is

ρ(r, r′) = 〈r|ρ̂|r′〉 =
∑

i

fi ψi(r)ψ
∗
i (r

′). (4.22)

The diagonal elements of the density-matrix are thus related to the electronic density

by

n(r) = 2ρ(r, r) (4.23)

and the generalised non-interacting kinetic energy is

T J
s [n] = 2

∫
dr′

[
−1

2
∇2

rρ(r, r
′)

]
r=r′

. (4.24)

This expression can be written as a trace of the density-matrix and the matrix elements

of the kinetic energy operator T̂ = −1
2
∇2 i.e. T J

s [n] = 2Tr(ρT ). Similarly, for the energy

of interaction of the electrons with the external (pseudo-) potential

Eps = 2
∫

dr dr′ Vps(r
′, r)ρ(r, r′) = 2Tr(ρVps) (4.25)
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where Vps(r
′, r) = 〈r′|V̂ps|r〉. The definitions of the Hartree and exchange-correlation en-

ergies in terms of the electronic density (now defined in terms of the density-matrix by

equation 4.23) remain unchanged. Thus we can express the total energy of both interact-

ing and non-interacting systems in terms of the density-matrix. By minimising the energy

with respect to the density-matrix (subject to appropriate constraints to be discussed) we

can thus find the ground-state properties of the system.

4.4 Constraints on the density-matrix

4.4.1 Trace

From the definitions so far, the trace of the density-matrix is defined to be

2Tr(ρ) = 2
∫

dr ρ(r, r) =
∫

dr n(r) = N. (4.26)

This constraint may be applied explicitly, which is a simple matter given that this is a linear

constraint, or we may prefer to make the Legendre transform to the zero-temperature grand

canonical ensemble and work at fixed chemical potential and variable electron number,

minimising the grand potential Ω = E−µN rather than the total energy E. For insulators,

it is sufficient for the chemical potential µ to be between the energies of the highest occupied

and lowest unoccupied states.

4.4.2 Idempotency

The self-consistent ground-state density-matrix must display the property of idempotency

i.e. ρ2 = ρ. Unless the eigenvalues of the density-matrix (occupation numbers) remain

in the interval [0, 1] the density-matrix will follow unphysical “run-away” solutions. Un-

fortunately it is not possible to work directly with the eigenvalues of the density-matrix1

to constrain them to lie in this interval and together with the non-linearity of the idem-

potency condition, this constraint turns out to be the major problem to be tackled. We

briefly outline three ways in which this constraint can be dealt with. The first two of these

are related and all three are described in [134] in the context of Hartree-Fock calculations.

If we are considering m orbitals in our scheme, then the density-matrix in the repre-

sentation of those orbitals, or of a linear combination of those orbitals, is an Hermitian

m×m matrix of rank n = 1
2
N . The factorisation property of idempotent density-matrices

1The computational cost of diagonalising a sparse density-matrix scales as the square of the system-size.
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is that an idempotent matrix P may always be written

P = TT † (4.27)

where T is an m× n matrix whose columns are orthonormal i.e.

T †T = 1n (4.28)

in which 1n denotes the n× n identity matrix.

Any Hermitian matrix can be diagonalised by some unitary matrix U such that the

diagonal matrix P̃ is

P̃ = U †PU. (4.29)

As already observed, the property P 2 = P implies P̃ 2 = P̃ so that each diagonal element

(eigenvalue) is zero or one. The rank of P is unchanged by the unitary transformation so

that P̃ has n 1’s and (m− n) 0’s on its diagonal. In this case,

P = UP̃U † = UP̃ 2U † = UP̃U †UP̃U † = TT † (4.30)

in which T is an m× n rectangular matrix whose n columns are selected from those of U .

These columns possess the required orthonormality from the unitary property of U and

the proof of the factorisation property is complete.

We also note that expressing the density-matrix in this way guarantees that it is positive

semi-definite

P̃ij =
∑

k

(U †T )ik(U
†T )†kj =

∑

k

(U †T )ik(U
†T )∗jk (4.31)

so that the eigenvalues are (no summation convention)

P̃ii =
∑

k

∣∣∣(U †T )ik
∣∣∣
2 ≥ 0. (4.32)

4.4.3 Penalty functional

Consider a matrix R0 which is not idempotent i.e. R2
0 6= R0. To make it so, we need to

reduce the matrix (R2
0 − R0) to zero, which can be achieved by minimising the (positive

semi-definite) scalar quantity Tr [(R2
0 −R0)

2], whose minimum value is zero, with respect

to the individual elements. Since

∂Tr [(R2
0 −R0)

2]

∂(R0)ij
= [2R0(R0 − 1)(2R0 − 1)]ji , (4.33)
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this can be achieved by using the right-hand side of this equation as a search direction

in a steepest descents or conjugate gradients scheme. This results in a rapidly convergent

(second order) sequence R0, R1, R2 etc. which in the steepest descents method is defined

by

Rn+1 = R2
n(3− 2Rn). (4.34)

The limit R∞ is a strictly idempotent matrix close to R0 in the sense that the separation

Tr
[
(R∞ −R0)

2
]
¿ Tr(R∞) = n. (4.35)

Kohn [135] has suggested the use of the square-root of this function as a penalty func-

tional for the density-matrix:

P [ρ] =
[∫

dr
(
ρ2(1− ρ)2

)
(r, r)

] 1
2

(4.36)

and has proved that the minimum of the functional

2Tr(ρHKS)− µN + αP [ρ]

equals the ground-state grand potential (i.e. P [ρ] = 0) for some α > αc({εi};µ). In

particular,

αc > 2


 ∑

i,εi≤µ
(εi − µ)2




1
2

(4.37)

although he does not prove that this is a lower bound. A practical scheme would increase

the value of α until the minimum of the functional occurred for P [ρ] = 0, and this is

discussed more fully in section 6.1.

4.4.4 Purifying transformation

We consider the result of one steepest descent step i.e. one iteration of equation 4.34 which

allows us to write the density-matrix ρ in terms of an auxiliary matrix σ as

ρ = 3σ2 − 2σ3. (4.38)

The second order convergence is exhibited by

ρ2 − ρ = 4(σ2 − σ)3 − 3(σ2 − σ)2 (4.39)
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so that if σ is a nearly idempotent matrix (in a manner to be defined below), then ρ

constructed from σ by (4.38) is a more nearly idempotent matrix, with leading error second-

order in the error of σ.

In the common diagonal representation of ρ and σ this relationship can be expressed

in terms of the individual eigenvalues λρ and λσ:

λρ = 3λ2
σ − 2λ3

σ. (4.40)

Thus as long as all of the eigenvalues of σ lie in the interval −1
2
≤ λσ ≤ 3

2
the eigenvalues

0.0 1.0 1.5-0.5

1.0

λσ

λρ

Figure 4.1: Behaviour of eigenvalues under the purifying transformation.

of ρ will lie in the interval 0 ≤ λρ ≤ 1 as required. If any of the eigenvalues of σ lie outside

the interval [1−
√

5
2
, 1+

√
5

2
], then ρ as constructed by (4.38) will be less idempotent than σ,

and this defines the meaning of “nearly idempotent” for σ. Run-away solutions are still

possible when the purifying transformation is used to construct ρ, but at least there is now

a metastable minimum at the ground-state, and variation of σ will implicitly drive ρ to

idempotency.

4.4.5 Idempotency-preserving variations

Finally we consider the most general change which an idempotent m×m matrix of rank n

can suffer, while maintaining that idempotency. Using the factorisation property we write
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R = TT † and consider changes in T i.e. T → T + δT , where, without loss of generality,

δT = ∆T (4.41)

in which ∆ is an arbitrary non-singular m × m matrix. Now the density-matrix R is a

projection operator associated with an n-dimensional vector subspace (ΓR) spanned by the

columns of T . Any vector x may of course be uniquely decomposed into its components

lying in the subspace ΓR and in the complementary subspace Γ1−R:

x = xR + x1−R (4.42)

where

xR = Rx, (4.43)

x1−R = (1−R)x. (4.44)

To define a new matrix R it is sufficient to define a new n-dimensional subspace. Since

any vector can be decomposed according to equation 4.42, including the columns of T , any

new vector (of arbitrary length) can be formed by adding a vector lying completely outside

ΓR. n arbitrary linearly-independent vectors of this kind are given by the columns of

δT = (1−R)∆T (4.45)

in which the action of (1−R) is to project out the part of ∆T lying in ΓR. So T + δT with

δT defined by (4.45) defines a new subspace in a completely general way. However the

columns of T ′ = T + δT are no longer orthonormal and so it is necessary to orthonormalise

the columns of T ′ to obtain a new set T̃ which defines the new projection operator

R + δR = T̃ T̃ †. (4.46)

The metric associated with the vectors of T ′ is the m×m matrix M = T ′†T ′ and so a

convenient orthonormalisation is

T̃ = T ′M− 1
2 . (4.47)

Defining v = (1 − R)∆R we note the following relations, following from T †T = 1 and

TT † = R.

T †R = T †(TT †) = (T †T )T † = T † (4.48)

RT = T (4.49)
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T †v = T †(1−R)∆R = 0 (4.50)

v†T = 0 (4.51)

Thus R + δR

= T̃ T̃ † = T ′M− 1
2 (T ′M− 1

2 )† = T ′M−1T ′† = T ′(T ′†T ′)−1T ′†

= [T + (1−R)∆T ]
[
(T + (1−R)∆T )†(T + (1−R)∆T )

]−1
[T + (1−R)∆T ]†

= (R + v)T
[
T †(1 + v†)(1 + v)T

]−1
T †(R + v†)

= (R + v)
[
1 + v†v

]−1
(R + v†). (4.52)

When ∆ represents a small change, then a convergent expansion for the inverse matrix in

equation 4.52 can be used

[
1 + v†v

]−1
=

∞∑

n=0

(−1)n(v†v)n (4.53)

to write down δR to any order

δR = (v + v†) + (vv† − v†v) + . . . (4.54)

By taking the expansion to first order only, we make the change δR linear in ∆ (which

has certain advantages e.g. in implementing conjugate gradients) and see that this does

indeed maintain idempotency to first order:

δR = v + v† = (1−R)∆R +R∆†(1−R), (4.55)

(4.56)

(R + δR)2 − (R + δR) = (R2 −R) +RδR + (δR)R + (δR)2 − δR

= R(1−R)∆R +R2∆†(1−R) + (1−R)∆R2 +R∆(1−R)R

−(1−R)∆R−R∆†(1−R) + (δR)2

= (R2 −R)∆†(1−R) + (1−R)∆(R2 −R) + (δR)2

= (δR)2 (4.57)

which vanishes to first order in δR as required. Thus if we have the ground-state density-

matrix and consider making variations consistent with idempotency to first order as de-

scribed here, then the energy must increase, and again some stability against the run-away

solutions is obtained.
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4.5 Requirements for linear-scaling methods

We have shown how it is possible to reformulate density-functional theory in terms of the

single-particle density-matrix, and the constraints which must be obeyed by ground-state

density-matrices. However, in the coordinate representation, we note that the density-

matrix is a function of two position variables ρ(r, r′) and thus contains an amount of

information which scales as the square of the system-size (as of course it must since it

contains all of the information in the Kohn-Sham orbitals, which are functions of one

position but with the number of occupied orbitals also scaling linearly with system-size).

To obtain a linear-scaling method, it is necessary to impose some further restrictions on

the density-matrix.

4.5.1 Separability

In practice we do not wish to deal with a function of six variables (i.e. two three-dimensional

positions). From the factorisation property of idempotent density-matrices, or the defini-

tion of the ground-state density-matrix in terms of the Kohn-Sham orbitals;

ρ(r, r′) =
∑

i

ψi(r)fi ψ
∗
i (r

′), (4.58)

we see that it is possible to consider separable density-matrices described in terms of some

auxiliary orbitals. The general form of a separable density-matrix in terms of orbitals {ϕi}
is

ρ(r, r′) =
∑

ij

ϕi(r)Rijϕ
∗
j(r

′). (4.59)

Although it is not necessary for the auxiliary orbitals to be orthonormal, in the case

when they are, we can consider this general form as simply a unitary transformation of the

Kohn-Sham expression (4.58):

ψi(r) =
∑

j

ϕj(r)Uji (4.60)

where U is the unitary matrix which diagonalises R:

fi = (U †RU)ii (no summation). (4.61)

When the auxiliary orbitals are not orthonormal, then they can be viewed as a more

general linear combination of the Kohn-Sham orbitals (involving both a unitary and Löwdin

transformation) which is described in section 4.6. Whichever case applies, there is no loss

of generality here as all idempotent matrices can always be expressed in this way, and these



52 Linear-scaling methods in ab initio quantum-mechanical calculations

are the density-matrices of interest to us.

4.5.2 Spatial localisation

Kohn [136] has proved that in one-dimensional systems with a gap, a set of exponentially

decaying Wannier functions can be found in the tight-binding limit, and that this localisa-

tion is related to the square-root of the gap. His method is not easily generalised to higher

numbers of dimensions, and so until recently the exact nature of the Wannier functions

in general three-dimensional systems was unknown, although it was anticipated that they

would decay exponentially [137–139]. More recent numerical and analytical studies of the

localisation of the density-matrix showed the decay to be exponential and again related to

the square-root of the gap [140,141], thus supporting the general validity of Kohn’s result.

Very recently, however, Ismail-Beigi and Arias [142] have argued that in the weak-binding

limit the exponential decay varies linearly with the gap. What is now certain is that the

Wannier functions and density-matrix decay exponentially in systems with a gap, and that

this decay is more rapid in systems with larger gaps.

Wannier functions are simply a unitary transformation of Bloch wave-functions with

respect to the complementary variables of Bloch wave-vector and lattice vector. Let ψnk(r)

be the normalised Bloch wave-function for the nth band with wave-vector k. Then the

corresponding Wannier function for that band wnR(r) is defined by [143]

wnR(r) =

(
Ωcell

(2π)3

) 1
2 ∫

1BZ
dk ψnk(r) exp(−ik ·R) (4.62)

and naturally the inverse relation holds:

ψnk(r) =

(
Ωcell

(2π)3

) 1
2 ∑

R

wnR(r) exp(ik ·R). (4.63)

The properties of Wannier functions are that they are localised in different cells (labelled

by lattice vector R) and are orthonormal:

∫
dr w∗nR(r) wnR′(r) = δRR′ . (4.64)

The single-particle density-matrix in the case of full k-point sampling %(r, r′) is given

by

%(r, r′) =
∑

i

fi
1

ΩBZ

∫
dk ψik(r)ψ

∗
ik(r

′) (4.65)

(in which we have assumed that we are dealing with an insulator with completely full
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or empty bands) which is a trace over wave-vector k and thus invariant under unitary

transformation so that it can also be written

%(r, r′) =
∑

i

fi
∑

R

wiR(r)w∗iR(r′). (4.66)

Thus if the Wannier function wiR(r) is vanishing when |r−R| is large, then when |r− r′|
is large the density-matrix must also vanish in the same way since it is impossible in that

case for both |r−R| and |r′ −R| to be small. Thus we expect that

ρ(r, r′) → 0 as |r− r′| → ∞ (4.67)

where at zero temperature the decay is exponential in insulators and algebraic in metals.

We can exploit this long-range behaviour to obtain a linear-scaling method: we intro-

duce a spatial cut-off rcut and require that the density-matrix be strictly zero when the

separation of its arguments exceeds this cut-off;

ρ(r, r′) = 0, |r− r′| > rcut, (4.68)

so that the density-matrix now only contains an amount of information which scales linearly

with system-size. Imposing this cut-off naturally restricts the variational freedom of the

density-matrix, so it will be necessary to converge the ground-state energy with respect

to this parameter in real calculations. Using the separable form above, we can impose

this restriction by requiring the auxiliary orbitals to be localised in space (i.e. vanishing

outside a certain region of space) and by making the matrix R sparse, so that elements of

R corresponding to orbitals localised in regions separated by more than the spatial cut-off

rcut are automatically set to zero. The localised nature of the auxiliary orbitals requires a

localised basis-set to describe them, and this is the subject of chapter 5.

4.6 Non-orthogonal orbitals

We conclude this chapter with a discussion about the representation of the density-matrix

using non-orthogonal orbitals. We consider a set of non-orthogonal functions {φα(r)} which

we denote {|φα〉}, and introduce their dual functions defined by

|φα〉 = |φβ〉S−1
βα (4.69)
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in which the summation convention is assumed and the matrix S−1 is the inverse of the

overlap matrix S defined by

Sαβ = 〈φα|φβ〉 =
∫

dr φα(r)φβ(r). (4.70)

We have assumed from now on that we are only calculating wave-functions at the Γ-point

and so can assume that everything is real. By construction, the dual states obey

〈φα|φβ〉 = 〈φα|φβ〉 = δβα (4.71)

and the completeness relation is expressed as

|φα〉〈φα| = |φα〉〈φα| = |φα〉S−1
αβ 〈φβ| = 1. (4.72)

In general we will represent the density-matrix in the separable form

ρ(r, r′) = φα(r)K
αβφβ(r

′) (4.73)

and note that the density-kernel Kαβ 6= 〈φα|ρ̂|φβ〉 because of the non-orthogonality.

We can construct an orthonormalised set of orbitals {|ϕα〉} defined as linear combina-

tions of the {|φα〉} by the Löwdin transformation:

|ϕα〉 = |φβ〉S−
1
2

βα (4.74)

such that

〈ϕα|ϕβ〉 = S
− 1

2
αγ 〈φγ|φδ〉S−

1
2

δβ = S
− 1

2
αγ SγδS

− 1
2

δβ = δαβ. (4.75)

At the ground-state, these orthonormal orbitals {|ϕα〉} will be a unitary transformation of

the Kohn-Sham orbitals {|ψi〉}, so that the density-kernel K̃ defined as the density-matrix

in the representation of the orthonormalised orbitals {|ϕα〉},

K̃αβ = 〈ϕα|ρ̂|ϕβ〉, (4.76)

can be diagonalised by a unitary transformation U as described in section 4.5.1 i.e. fi =

(U †K̃U)ii (no summation convention). The following relationship also holds;

|ψi〉 = |ϕα〉Uαi, (4.77)

and the relationship between the non-orthogonal orbitals {|φα〉} and the Kohn-Sham or-
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bitals {|ψi〉} is of the general form

|ψi〉 = |ϕα〉Uαi = |φβ〉S−
1
2

βα Uαi = |φβ〉Vβi (4.78)

where the matrix V = S−
1
2U and obeys

V †V = U †S−1U, (4.79)

V V † = S−1. (4.80)

Using the completeness relation (4.72) we can now express the matrix K in terms of

other quantities:

ρ(r, r′) = φα(r)K
αβφβ(r

′)

= 〈r|ρ̂|r′〉 = 〈r|φα〉S−1
αγ 〈φγ|ρ̂|φδ〉S−1

δβ 〈φβ|r′〉
= φα(r)S

−1
αγ 〈φγ|ρ̂|φδ〉S−1

δβ φβ(r
′) (4.81)

so that

Kαβ = S−1
αγ 〈φγ|ρ̂|φδ〉S−1

δβ , (4.82)

〈φα|ρ̂|φβ〉 = (SKS)αβ. (4.83)

In fact, the density-kernel K contains the matrix elements of the density-operator in the

representation of the dual vectors of the non-orthogonal functions:

Kαβ = S−1
αγ 〈φγ|ρ̂|φδ〉S−1

δβ = 〈φα|ρ̂|φβ〉, (4.84)

hence the superscript notation.

If we wish to obtain the occupation numbers, we must diagonalise the matrix K̃ which

is given by

K̃αβ = 〈ϕα|ρ̂|ϕβ〉
= 〈ϕα|φγ〉S−1

γδ 〈φδ|ρ̂|φε〉S−1
εζ 〈φζ |ϕβ〉

= S
1
2
αγS−1

γδ (SKS)δεS
−1
εζ S

1
2
ζβ

= (S
1
2KS

1
2 )αβ. (4.85)

Thus the eigenvalues of (S
1
2KS

1
2 ) are the occupation numbers.

At the ground-state, the density-operator and Hamiltonian commute, and thus both the

Hamiltonian and the density-matrix can be diagonalised simultaneously. The Hamiltonian
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is usually represented by its matrix elements in the representation of the non-orthogonal

orbitals. Thus

Hαβ = 〈φα|Ĥ|φβ〉 (4.86)

in contrast to the definition of K. In this case, to obtain the eigenvalues of the Hamiltonian

{εi} it is necessary to diagonalise the matrix H̃

H̃αβ = 〈ϕα|Ĥ|ϕβ〉
= 〈ϕα|φγ〉S−1

γδ 〈φδ|Ĥ|φε〉S−1
εζ 〈φζ |ϕβ〉

= S
1
2
αγS−1

γδ HδεS
−1
εζ S

1
2
ζβ

= (S−
1
2HS−

1
2 )αβ (4.87)

i.e. the eigenvalues of (S−
1
2HS−

1
2 ) are those of the Kohn-Sham Hamiltonian.

The advantage of representing the density-operator and Hamiltonian in different ways

is that quantities such as the electron number and non-interacting energy can be expressed

easily:

N = 2Tr(K̃) = 2Tr(KS) (4.88)

ENI = 2Tr(K̃H̃) = 2Tr(KH) (4.89)

since the factors of S−
1
2 and S

1
2 cancel.

In the language of tensor analysis, the functions {|φα〉} are covariant vectors, and their

duals the associated contravariant quantities. The overlap matrix Sαβ plays the rôle of the

metric tensor to convert between covariant and contravariant quantities. This is seen by

verifying the relationship

Sαβ = S−1
αβ . (4.90)

For the orthogonal functions {|ϕα〉}, the metric tensor is the identity and so there is no

distinction between covariant and contravariant quantities.

In a linear-scaling scheme we will not be able to access the eigenvalues directly, since

although H and K are sparse, H̃ and K̃ need not be, and in any case, the effort to

diagonalise even a sparse matrix is O(N2). However it is important to understand the

different origins and rôles of these matrices in order to analyse the equations which result

when we attempt to minimise the total energy to find the ground-state.



Chapter 5

Localised basis-set

One elegant and popular choice of basis in traditional calculations has been the plane-

wave basis. However, because of the extended nature of these basis functions they cannot

be used in linear-scaling calculations, and a different choice has to be made, in which

the basis functions are localised in real-space. Gaussians [144] are a popular choice since

many quantities can be calculated analytically [145], an advantage shared by the basis-set

proposed here. Other choices include truncated atomic orbitals [146], B-splines or “blip”

functions [147], wavelets [148] and real-space grids [149].

In this chapter we consider a localised spherical-wave basis set suitable for linear-scaling

total-energy pseudopotential calculations. The basis-set is conveniently truncated using a

single parameter, the kinetic energy cut-off used with the plane-wave basis. We present an-

alytic results for the overlap integrals between any two basis functions centred on different

sites, as well as for the kinetic energy matrix-elements which can, therefore, be evaluated

accurately in real-space. Two methods for analytically performing the projection of the ba-

sis states onto angular momentum states required for the use of non-local pseudopotentials

are also presented. This work has been published in [150].

5.1 Introduction

We present a set of localised functions which are related to the plane-wave basis set and

share some of its attractive features. A significant problem associated with localised basis

functions is that they are not in general orthogonal, so that as the size of the basis is

increased, the overlap matrix becomes singular. We demonstrate that the basis functions

introduced here are orthogonal, by construction, to others centred on the same site, and

that the overlap matrix elements for functions centred on different sites can be calculated

analytically, and hence evaluated efficiently and accurately when implemented computa-

57
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tionally.

Another disadvantage of using basis functions localised in real-space arises in the calcu-

lation of the action of the kinetic energy operator. To take advantage of the localisation it

is necessary to focus on real-space and calculate all quantities in that representation. How-

ever, since the kinetic energy operator is diagonal in reciprocal-space, the kinetic energy

matrix elements are most naturally calculated in reciprocal-space. Methods to evaluate the

kinetic energy using finite-difference schemes can be inaccurate when used with localised

functions. It is particularly difficult to obtain accurate values for second derivatives in the

vicinity of the support region boundaries so that this error is of the order of the surface

area to volume ratio. For the one-centre integrals this is not significant, but for the two-

centre integrals, the intersection of two spheres may have a large surface area to volume

ratio and the error may therefore be large. Indeed, investigations show that the estimates

of such integrals obtained by finite differences may often be of the wrong sign! With the

new choice of basis, the matrix-elements of the kinetic energy operator between any two

functions can also be calculated analytically, thereby overcoming this problem.

One final advantage arises in the inclusion of non-local pseudopotentials which tradi-

tionally required significant computational effort. We present two methods of obtaining the

matrix-elements of the non-local pseudopotential operator by performing the projection of

the basis function onto a core angular momentum state analytically.

5.2 Origin of the basis functions

As described in section 3.3, in the pseudopotential approximation, the core electrons and

strong ionic potential of the atom are replaced by a much weaker potential in which the

remaining pseudo-valence electrons move. The pseudo-valence states no longer have to be

orthogonal to lower-lying core states and hence are much smoother than the all-electron

valence states in the core region and have less kinetic energy. Thus the pseudo-valence

states can be accurately represented by a much smaller set of plane-wave basis functions

than the all-electron states.

The plane-wave basis state exp[iq · r] is a solution of the Helmholtz equation (the time-

independent free-electron Schrödinger equation)

(
∇2 + q2

)
ψ(r) = 0 (5.1)

subject to periodic boundary conditions, with energy E = 1
2
q2.

If instead we wish to localise the basis functions, say within spherical regions of radius

a, so that the function vanishes outside these regions, then appropriate conditions would
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be to require the functions to be finite within the regions and to vanish on the boundary.

The solutions to the Helmholtz equation 5.1 subject to these conditions are then truncated

spherical-waves

ψ(r) =




j`(qr) Y`m(ϑ, ϕ), r < a

0, r ≥ a
(5.2)

where (r, ϑ, ϕ) are spherical polar coordinates with the origin at the centre of the spherical

region, ` is a non-negative integer, m is an integer satisfying −` ≤ m ≤ ` and q is chosen to

satisfy j`(qa) = 0. j` denotes a spherical Bessel function and Y`m is a spherical harmonic.

Solutions involving the spherical von Neumann function n` have been rejected because they

are not finite at the centre of the sphere.

We note that these functions solve the same equation as the plane-wave basis functions,

so that within the pseudopotential approximation the wave-functions will be well-described

by a truncated set of these basis functions. Moreover, these functions are eigenstates of

the kinetic energy operator within the localisation region r < a (i.e. in the region in which

they will be used to describe the wave-functions) with eigenvalue 1
2
q2 so that the same

kinetic energy cut-off used to truncate the plane-wave basis can be used here to restrict

the values of ` and q.

Since the Laplacian is a self-adjoint operator under these boundary conditions, appli-

cation of Sturm-Liouville theory proves that all states within the same spherical region are

mutually orthogonal.

In a calculation, the electronic states are described by covering the simulation cell with

overlapping spheres (known as support regions), usually chosen to be centred on the ions

or bond-centres at positions Rα, and expanding the localised support functions φα within

these spheres in this basis:

φα(r) =
∑

n`m

cn`m(α) j`(qn` |r−Rα|) Y`m(Ωr−Rα). (5.3)

The notation Ωr is introduced as shorthand for the polar and azimuthal angles of the vector

r used to represent that vector in spherical polar coordinates. We denote the radius of the

sphere by rα so that the {qn`} satisfy j`(qn`rα) = 0.

The expansion (5.3) is frequently written down formally, but rarely used computation-

ally because of the inconvenience of using spherical Bessel functions in numerical work.

However, the analytic results derived in the following sections offset this disadvantage.

As mentioned in section 3.2.2, linear-scaling methods are aimed at large systems, and

so the Brillouin zone sampling of the electronic states is usually restricted to the states at

the Γ-point only. The wave-functions can then be made real without loss of generality, and

so in practice we use real linear combinations of the spherical harmonics defined below,
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which does not alter any of the analysis here.

{Y`m} →





Ȳ`,0(Ω) = Y`,0(Ω)

Ȳ`,|m|(Ω) = 1√
2

[
Y`,−|m|(Ω) + (−1)mY`,|m|(Ω)

]

Ȳ`,−|m|(Ω) = i√
2

[
Y`,−|m|(Ω)− (−1)mY`,|m|(Ω)

]





(5.4)

These real combinations of spherical harmonics, which we denote Ȳ`m, can be written down

as real functions of the variables
{
x
r
, y
r
, z
r

}
where (x, y, z) are Cartesian coordinates with

origin at the centre of the sphere, and are familiar as the angular components of s, p, d

etc. orbitals.

We introduce χα,n`m(r) to represent a truncated spherical-wave basis function centred

at Rα and confined to a sphere of radius rα:

χα,n`m(r) =




j`(qn` |r−Rα|)Ȳ`m(Ωr−Rα), |r−Rα| ≤ rα,

0, |r−Rα| > rα.
(5.5)

Equation 5.3 can then be written:

φα(r) =
∑

n`m

cn`m(α) χα,n`m(r). (5.6)

5.3 Fourier transform of the basis functions

We define the Fourier transform of a basis function χα,n`m(r) by

χ̃α,n`m(k) =
∫

all space
dr exp[ik · r] χα,n`m(r)

= exp [ik ·Rα]
∫ rα

0
dr r2 j`(qn`r)

∫
dΩr exp[ik · r] Ȳ`m(Ωr). (5.7)

The angular integral is performed by using the expansion of exp[ik · r] into spherical-waves

(A.3, appendix A) leaving the radial integral

χ̃α,n`m(k) = 4πi` Ȳ`m(Ωk) exp [ik ·Rα]
∫ rα

0
dr r2 j`(qn`r) j`(kr). (5.8)

The radial integral can now be calculated using equations A.4 and A.5 and the boundary

conditions (that the basis functions are finite at r = 0 and vanish at r = rα) for the cases

when k 6= qn` and k = qn` respectively. The final result for the Fourier transform of a basis
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function is then

χ̃α,n`m(k) = 4πi` Ȳ`m(Ωk) exp [ik ·Rα]





qn`r
2
α

k2 − q2
n`

j`(krα)j`−1(qn`rα), k 6= qn`, (a)

qn`r
3
α

k + qn`
j2
`−1(qn`rα), k = qn`. (b)

(5.9)

Equation 5.9b is in fact a limiting case of (5.9a) which can therefore always be substituted

for χ̃α,n`m(k) in an integral over reciprocal-space.

5.4 Overlap matrix elements

The overlap matrix for any two basis functions χα,n`m and χβ,n′`′m′ centred at Rα and Rβ

respectively is

Sα,n`m;β,n′`′m′ =
∫

dr χα,n`m(r)χβ,n′`′m′(r). (5.10)

Defining Rαβ = Rβ − Rα, and using the result for the Fourier transform of the basis

functions, the integral can be rewritten as

Sα,n`m;β,n′`′m′ =
1

(2π)3

∫
dk exp[−ik ·Rαβ]χ̃α,n`m(k)χ̃β,n′`′m′(−k). (5.11)

Using equation 5.9a we obtain

Sα,n`m;β,n′`′m′ =
(
qn`r

2
α

) (
qn′`′r

2
β

)
j`−1(qn`rα)j`′−1(qn′`′rβ) Iα,n`m;β,n′`′m′ (5.12)

where Iα,n`m;β,n′`′m′ is the integral

Iα,n`m;β,n′`′m′ =
2

π
i(`−`

′)
∫

dk
exp[−ik ·Rαβ]j`(krα) j`′(krβ)

(k2 − q2
n`) (k2 − q2

n′`′)
Ȳ`m(Ωk)Ȳ`′m′(Ωk). (5.13)

Introducing differential operators D̂`m, obtained from Ȳ`m by making the replacement

{
x

r
,
y

r
,
z

r

}
−→

{
∂

∂xαβ
,
∂

∂yαβ
,
∂

∂zαβ

}

where Rαβ = (xαβ, yαβ, zαβ) in Cartesian coordinates, equation 5.13 becomes

Iα,n`m;β,n′`′m′ = 4(−1)` D̂`mD̂`′m′

∫ ∞

−∞
dk

j`(krα) j`′(krβ) j0(kRαβ)

k(`+`′) (k2 − q2
n`) (k2 − q2

n′`′)
(5.14)
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where we have used the fact that the integrand is an even function of k for all values of ` and

`′ to change the limits of the integral. From equation 5.14 Iα,n`m;β,n′`′m′ no longer appears

manifestly symmetric with respect to swapping α and β (since there is no (−1)`
′

term).

Nonetheless, it still is because under the swap {α, n`m} ↔ {β, n′`′m′}, D̂`m → (−1)`
′
D̂`′m′

and D̂`′m′ → (−1)`D̂`m.

The three spherical Bessel functions in equation 5.14 can all be expressed in terms of

trigonometric functions and algebraic powers of the argument, using the recursion rules

(A.1, A.2). The product of three trigonometric functions can always be expressed as a sum

of four trigonometric functions with different arguments, using well-known identities. The

result is to split the integrand up into terms of the following form:

sin k (rα ± rβ ±Rαβ)

kp (k2 − q2
n`) (k2 − q2

n′`′)
, p always an odd integer,

(5.15)

cos k (rα ± rβ ±Rαβ)

kp (k2 − q2
n`) (k2 − q2

n′`′)
, p always an even integer.

These terms are individually singular and generally possess a pole of order p on the real axis

at k = 0 and cannot be integrated. However, since we are integrating finite well-behaved

functions over a finite volume of space, we know that the total integrand cannot contain

any non-integrable singularities. Therefore we can add extra contributions to each term to

cancel all the singularities except simple poles, in the knowledge that all these extra terms

must cancel when the terms are added together to obtain the total integrand.

We shall evaluate the integrals using the calculus of residues so that the general integral

to be performed is

I =
∮

C
dz

exp[iRz]

zp (z2 − q2
n`) (z2 − q2

n′`′)
(5.16)

where R = rα±rβ±Rαβ and the contour C runs along the real z-axis from −∞ to +∞, and

is closed in either the upper or lower half z-plane, depending upon whether R is positive

or negative respectively. Adding the extra terms to remove the non-integrable singularities

we obtain the final form of the integral

I =
∮

C
dz

exp[iRz]−∑p−2
m=0

(iRz)m

m!

zp (z2 − q2
n`) (z2 − q2

n′`′)
. (5.17)

This integrand has simple poles lying on the contour of integration at z = 0,±qn`,±qn′`′ .
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The residues of these poles are

(iR)p−1

(p− 1)! q2
n` q

2
n′`′

, z = 0,

(5.18)

exp[±iqn`R]−∑p−2
m=0

(±iqn`R)m

m!

2 (q2
n` − q2

n′`′) (±qn`)p+1 , z = ±qn` (similarly for z = ±qn′`′).

Summing the residues to perform the Cauchy principal value integrals, and taking real or

imaginary parts as appropriate, we obtain the following results:

∫ ∞

−∞
dk

sin kR + (cancelling terms)

kp (k2 − q2
n`) (k2 − q2

n′`′)
=

π sgnR

q2
n` − q2

n′`′


−(−1)

p−1
2 Rp−1

(p− 1)! q2
n`

+
(−1)

p−1
2 Rp−1

(p− 1)! q2
n′`′

+
cos qn`R

qp+1
n`

(5.19)

−cos qn′`′R

qp+1
n′`′

−
p−3∑

m=0, even

{
(−1)

m
2 Rm

m! qp−m+1
n`

− (−1)
m
2 Rm

m! qp−m+1
n′`′

}
 ,

∫ ∞

−∞
dk

cos kR + (cancelling terms)

kp (k2 − q2
n`) (k2 − q2

n′`′)
=

π sgnR

q2
n` − q2

n′`′

[
−(−1)

p
2 Rp−1

(p− 1)! q2
n`

+
(−1)

p
2 Rp−1

(p− 1)! q2
n′`′

− sin qn`R

qp+1
n`

(5.20)

+
sin qn′`′R

qp+1
n′`′

+
p−3∑

m=1, odd





(−1)
m−1

2 Rm

m! qp−m+1
n`

− (−1)
m−1

2 Rm

m! qp−m+1
n′`′








where

sgnR =




−1, R < 0,

+1, R ≥ 0.
(5.21)

For the case when qn` = qn′`′ , we note that since the integrand in equation 5.17 must still

only have a simple pole at z = ±qn` we obtain a simplified form in this special case by

taking the limit qn′`′ → qn` of equations 5.19 and 5.20.

∫ ∞

−∞
dk

sin kR + (cancelling terms)

kp (k2 − q2
n`)

2 =

π sgnR
(−1)

p−1
2 Rp−1

(p− 1)! q4
n`

− (p+ 1)cos qn`R

2qp+3
n`

− Rsin qn`R

2qp+2
n`

(5.22)

+
p−3∑

m=0, even

(−1)
m
2 (p−m+ 1)Rm

2(m!)qp−m+3
n`

,
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∫ ∞

−∞
dk

cos kR + (cancelling terms)

kp (k2 − q2
n`)

2 =

π sgnR
(−1)

p
2Rp−1

(p− 1)! q4
n`

− (p+ 1)sin qn`R

2qp+3
n`

− Rcos qn`R

2qp+2
n`

(5.23)

+
p−3∑

m=1, odd

(−1)
m−1

2 (p−m+ 1)Rm

2(m!)qp−m+3
n`

.

The result for Sα,n`m;β,n′`′m′ is obtained by summing the results in equations 5.19, 5.20,

5.22 and 5.23 for all the terms in the expansion of the integrand (5.14) and then operating

with the differential operators D̂`m.

A second special case occurs when Rαβ = 0, and in this case it is simplest to perform

the integral (5.10) in real-space using the generalised orthogonality relation for spherical

Bessel functions (A.4) when qn` 6= qn′`′ .

Sα,n`m;β,n′`′m′ =
1

q2
n` − q2

n′`′
δ``′δmm′




−qn`r2

αj`(qn′`′rα)j`−1(qn`rα), rα < rβ,

qn′`′r
2
βj`(qn`rβ)j`−1(qn′`′rβ), rα ≥ rβ.

(5.24)

There is also the case when Rαβ = 0 and qn` = qn′`′ which is calculated using equation

A.5.

Sα,n`m;β,n′`′m′ = 1
2
δ``′δmm′




r3
αj

2
`−1(qn`rα), rα < rβ,

r3
βj

2
`−1(qn`rβ), rα ≥ rβ.

(5.25)

Finally, it is obvious that the overlap matrix element must vanish when the separation of

the the sphere centres exceeds the sum of their radii (i.e. Rαβ > rα + rβ) because then

there is no region of space where both basis functions are non-zero. However, this is not

obvious from the results presented above, but arises because of the change of sign of the

residue sums in equations 5.19, 5.20, 5.22 and 5.23 (denoted by sgnR) which occurs when

Rαβ = rα + rβ and results in the exact cancellation of all terms.

5.5 Kinetic energy matrix elements

The kinetic energy matrix elements for any two basis functions χα,n`m and χβ,n′`′m′ centred

at Rα and Rβ respectively are defined by

Tα,n`m;β,n′`′m′ = −1
2

∫
dr χα,n`m(r)∇2χβ,n′`′m′(r)

=
1

2(2π)3

∫
dk k2 exp[−ik ·Rαβ]χ̃α,n`m(k)χ̃β,n′`′m′(−k). (5.26)
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Because of the discontinuity in the first derivatives of the basis functions at the sphere

boundaries, a delta-function arises when the Laplacian operates on a basis function. This

is integrated out when the matrix element is calculated and this contribution is included

when transforming the real-space integral to reciprocal-space in equation 5.26.

The second line of equation 5.26 is identical to equation 5.11 apart from a factor of 1
2
k2.

The same separation into individually regular terms can be applied here, and the result is

that we need to calculate the contour integral (5.17) as before, except that the integer p

must be replaced by (p− 2) and a numerical factor of 1
2

is introduced. The calculation of

the residues is identical to that presented in the previous section, except that the integrand

no longer always has a pole at z = 0 in every term.

The results for Tα,n`m;β,n′`′m′ when Rαβ = 0 are

1
2
δ``′δmm′

q2
n` − q2

n′`′




−q3

n`r
2
αj`(qn′`′rα)j`−1(qn`rα), rα < rβ

q3
n′`′r

2
βj`(qn`rβ)j`−1(qn′`′rβ), rα ≥ rβ



 qn` 6= qn′`′ ,

(5.27)

1
4
δ``′δmm′q

2
n`




r3
αj

2
`−1(qn`rα), rα < rβ

r3
βj

2
`−1(qn`rβ), rα ≥ rβ



 qn` = qn′`′ .

The calculation of the kinetic energy has been checked by projecting a set of wave-functions

expanded in the spherical-wave basis onto the plane-wave basis using equation 5.9a. As the

kinetic energy cut-off for the plane-wave basis is increased, so the description of the wave-

functions becomes more accurate. The kinetic energy calculated using the results above can

then be compared against the kinetic energy calculated by the plane-wave O(N3) castep

code [82].

From the asymptotic behaviour of the spherical Bessel functions, the Fourier transform

(5.9a) for large k is

χ̃α,n`m(k) ∝ sin(krα − `π
2
)

k3
Ȳ`m(Ωk) (5.28)

and so the error in the kinetic energy due to truncating the plane-wave basis with cut-off

Ecut = 1
2
k2

cut is

∆T ∝
∫ ∞

kcut

dk k2
(

1

k3

)
k2

(
1

k3

)
=

1

kcut

∝ 1√
Ecut

. (5.29)

In figure 5.1 the kinetic energy as calculated by the plane-wave code has been plotted

against 1/
√
Ecut and yields a straight line as expected, which can then be extrapolated to

obtain an estimate of the kinetic energy calculated for infinite cut-off: 60.66 ± 0.01 eV.

This is in agreement with the value calculated analytically of 60.65 eV.
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Figure 5.1: Plot of asymptotic fit to kinetic energy data.

5.6 Non-local pseudopotential

In this section we present two methods for obtaining the non-local pseudopotential matrix

elements. The first constructs a Green’s function in order to expand the basis functions

on one site in terms of the same functions centred elsewhere. This method is particularly

efficient, although it requires some restrictions to be made in the radial part of the support

functions to give a variational method. The second method adopts the Kleinman-Bylander

form and uses the results for the overlap matrix elements. This method is slower, but more

robust numerically and allows direct comparison with existing pseudopotential codes.

5.6.1 Green’s function method

The general form for a semi-local pseudopotential operator (i.e. one which is non-local in

the angular but not radial coordinates) for an ion is

V̂NL =
∑

`m

|`m〉δV̂`〈`m| (5.30)
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where 〈r|`m〉 = Ȳ`m(Ω) and Ȳ`m is centred on the ion.

The pseudopotential components δV` are themselves short-ranged in real-space, and

vanish beyond the core radius rc. Therefore the action of the non-local pseudopotential

depends only upon the form of the wave-functions within this core region. We require the

matrix elements of the non-local pseudopotential between localised basis functions which

are not necessarily centred on the ion.

We therefore need to find an expansion of the basis functions in terms of functions

localised within the pseudopotential core. Since the basis functions are all solutions of the

Helmholtz equation, we invoke the uniqueness theorem which states that the expansion we

seek is uniquely determined by the boundary conditions on the surface of the core region

and solve the Helmholtz equation subject to these inhomogeneous boundary conditions by

the standard method using the formal expansion of the Green’s function. We can write

the basis function over all space using the Heaviside step function H(x)

H(x) =





0, x < 0,

1, x ≥ 0,
(5.31)

so that a basis function centred in a sphere of radius rα at the origin (i.e. for Rα = 0) is

χα,n`m(r) = j`(qn`r)Ȳ`m(Ωr)H(rα − r) (5.32)

and therefore

(∇2 +q2
n`)χα,n`m(r) =

[
j`(qn`r)δ

′(rα − r)− 2
{
qn`j

′
`(qn`r) + r−1j`(qn`r)

}
δ(rα − r)

]
Ȳ`m(Ωr).

(5.33)

The terms on the right-hand side only contribute on the sphere boundary r = rα; every-

where else in space the basis function obeys the homogeneous Helmholtz equation (5.1).

These terms will give rise to an extra term in the Green’s function solution due to the

discontinuity of the first radial derivative of the basis function at the sphere boundary.

However, if the radial function for each angular momentum component has a continuous

first derivative, then these contributions will cancel. In this case, we can proceed assum-

ing that the basis function obeys the homogeneous equation everywhere. This condition

is naturally obeyed by the support functions when the support regions are large enough,

since there is a kinetic energy penalty associated with the same discontinuity in the radial

wave-function, but in this case we would lose any variational principle if there was a dis-

continuity at any stage during the minimisation. A better solution is to impose a sum rule



68 Linear-scaling methods in ab initio quantum-mechanical calculations

on the expansion coefficients in equation 5.3 to maintain a continuous radial derivative i.e.

∑
n

cn`m(α) qn`j
′
`(qn`rα) = 0 (5.34)

which can be used to fix one coefficient in terms of the rest for each angular momentum

component. This is the restriction mentioned above which must be imposed if the Green’s

function method is to be used. The basis function is assumed to obey the homogeneous

Helmholtz equation throughout all space. In the original support region, homogeneous

boundary conditions were applied. Now, in an overlapping region of radius rc (the core

region for the non-local pseudopotential), the basis function must still obey the same homo-

geneous Helmholtz equation, but it is now subject to inhomogeneous boundary conditions.

Standard methods can be used to transform this problem into the solution of an inhomo-

geneous Helmholtz equation subject to homogeneous boundary conditions, and this new

problem has a standard solution in terms of the Green’s function, which can be formally

expanded in terms of the eigenfunctions of an appropriate self-adjoint operator (here the

operator on the left of the Helmholtz equation). The result is

χα,n`m(r) =
∑

`′m′
fn`m`′m′

[
1 +

∑

n′
an`mn′`′ j`′(qn′`′r

′)

]
Ȳ`′m′(Ωr′) (5.35)

and is valid for points r′ = r−Rion + Rα within the core region (i.e. for r′ ≤ rc).

The coefficients fn`m`′m′ and an`mn′`′ are defined by:

fn`m`′m′ =
∫

r′=rc
dΩr′Ȳ`′m′(Ωr′) χα,n`m(r′ + Rion −Rα), (5.36)

an`mn′`′ =
2

r3
c j

2
`′−1 (λn′`′rc)

[
λn′`′ r

2
c j`′−1 (λn′`′rc)

q2
n` − λ2

n′`′
−

∫ rc

0
dr r2j`′ (λn′`′r)

]
.

(5.37)

The {λn`} are chosen by j`(λn`rc) = 0 and play the same rôle as the {qn`} in the expansion

of the wave-functions. The integral in equation 5.37 is straightforward to evaluate for given

`′.

The surface integral in equation 5.36 is evaluated by first rotating the coordinate system

so that the new z-axis is parallel to Rα −Rion, thus mixing the spherical harmonics [151].

The elements of the orthogonal spherical harmonic mixing matrices C
(`)
mm′ are defined by

the elements of the rotation matrix for the coordinate system. In terms of the components

(x, y, z) of the vector Rα −Rion of length r = |Rα −Rion|, and v2 = r(z + r), the rotation
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matrix O is given by:

O =
1

v2




v2 − x2 −xy −x(z + r)

−xy v2 − y2 −y(z + r)

x(z + r) y(z + r) z(z + r)


 (5.38)

The singularity which occurs when z = −r i.e. when the ion is “vertically” above the

support region, is avoided by inverting the calculation through the origin when z < 0. The

spherical harmonic matrices C
(`)
mm′ can be written in terms of the elements of this matrix.

Here we write them out explicitly for ` = 0, 1, 2:

C(0) = 1 (5.39)

C(1) =




O22 O32 O12

O23 O33 O13

O21 O31 O11


 (5.40)

C(2) =




O12O21 +O11O22 O22O31 +O21O32

√
3O31O32 . . .

O13O22 +O12O23 O23O32 +O22O33

√
3O32O33 . . .√

3O13O23

√
3O23O33

1
2
(3O2

33 − 1) . . .

O13O21 +O11O23 O23O31 +O21O33

√
3O31O33 . . .

O11O21 −O12O22 O21O31 −O22O32

√
3

2
(O2

31 −O2
32) . . .

. . . O12O31 +O11O32 O11O12 −O21O22

. . . O13O32 +O12O33 O12O13 −O22O23

. . .
√

3O33O13

√
3

2
(O2

13 −O2
23)

. . . O13O31 +O11O33 O11O13 −O21O23

. . . O11O31 −O12O32
1
2
(O2

11 +O2
22 −O2

12 −O2
21)




(5.41)

In the new coordinate system, the surface integral is written in terms of a one-dimensional

integral

K`′n`m(u, qn`) =
1

2u

[
(2`′ + 1)(2`+ 1)

(`′ − |m|)!(`− |m|)!
(`′ + |m|)!(`+ |m|)!

] 1
2

×
∫ min(u+1,rα/rc)

|u−1|
dz zP

|m|
`′

(
1 + u2 − z2

2u

)
j`(qn`rcz)P

|m|
`

(
1− u2 − z2

2uz

)

(5.42)

in which the dimensionless variable u = |Rα−Rion|
rc

is introduced. P
|m|
` (x) denotes an as-

sociated Legendre polynomial, and these integrals can all be calculated indefinitely using
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elementary methods once the integrand is expanded into trigonometric functions.
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Figure 5.2: Non-local pseudopotential energy against number of Bessel functions used
in Green’s function expansion

The numerical evaluation of the analytic results for K`′n`m(u, qn`) is inaccurate when

u¿ 1 and in this case it is necessary to employ Taylor expansions of the results. The two

different cases for the upper limit of the integral also need to be treated separately, and

this is one reason why the Kleinman-Bylander method described next is preferred.

The final result for fn`m`′m′ is then

fn`m`′m′ =
min(`,`′)∑

M=−min(`,`′)
C

(`′)
Mm′K`′n`mC

(`)
Mm. (5.43)

Defining the core matrix elements

δV `
nn′ =





∫ rc

0
dr r2 j`(λn`r)δV`(r)j`(λn′`) n, n′ 6= 0

∫ rc

0
dr r2 j`(λn`r)δV`(r) n 6= 0, n′ = 0

∫ rc

0
dr r2 δV`(r) n = n′ = 0

(5.44)

the matrix element of the non-local pseudopotential operator between any two basis func-

tions overlapping the core (χα,n`m and χβ,n′`′m′) can be written (defining an`m0L = 1) as the
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sum:

Vα,n`m;β,n′`′m′ =
∑

LM

fn`mLM fn
′`′m′

LM


 ∑

i,j=0

an`miL δV L
ij a

n′`′m′
jL


 . (5.45)

The non-local pseudopotential data is therefore stored in terms of the core matrix elements

defined in equation 5.45. In figure 5.2 we plot the non-local pseudopotential energy against

the number of core Bessel functions for an s-local silicon pseudopotential generated accord-

ing to the scheme of Troullier and Martins [74]. We see that the energy converges rapidly

with the number of core Bessel functions used (the dashed line is the energy calculated with

fifty core functions.) Increasing the number of core functions only increases the number

of an`mn′`′ coefficients required, and the separable nature of the calculation means that even

using fifty core functions requires very little computational effort.

5.6.2 Kleinman-Bylander form
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Figure 5.3: Non-local pseudopotential energy against number of Bessel functions used
to describe Kleinman-Bylander projectors.

We reproduce equation 3.76 which demonstrates the Kleinman-Bylander form of the

pseudopotential in terms of pseudo-atomic eigenstates {|φ`m〉}.

V̂KB = V̂loc +
∑

`m

|δV̂`φ`m〉〈φ`mδV̂`|
〈φ`m|δV̂`|φ`m〉

(5.46)
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For pseudopotentials whose non-local components {δV`} vanish at the core radius rc, the

projector states {|δV̂`φ`m〉} can be expanded in the basis-states {|χn`m〉}, and then the

matrix-elements of the pseudopotential operator are straightforwardly obtained by ap-

plying the result for the overlap matrix elements, without resorting to the scheme by

King-Smith et al. [152].

In figure 5.3 we show how the non-local pseudopotential energy rapidly converges as the

number of Bessel functions used to expand the Kleinman-Bylander projectors is increased.

This method is numerically more stable than the Green’s function method, although slower,

and has the added advantage that it allows a direct comparison to be made between the

results calculated using this basis-set and traditional plane-wave codes. For these reasons

the Kleinman-Bylander method has been used in computational implementations.

5.7 Computational implementation

The results in equations 5.19, 5.20, 5.22 and 5.23 have been written in a form which shows

that in general each term can be represented by a real numerical prefactor, integers which

are the powers of {R, qn`, qn′`′} and one further integer to signify the presence of one of

the terms {sin qn`R, sin qn′`′R, cos qn`R, cos qn′`′R}. When these terms are combined and

differentiated by the D̂`m, the general term also needs integers to represent powers of

{xαβ, yαβ, zαβ, Rαβ, rα, rβ}. Therefore a general term in the expressions for Sα,n`m;β,n′`′m′

and Tα,n`m;β,n′`′m′ could be represented by a data structure consisting of one real variable

g and ten integer variables I1−10 as follows:

g
xI1αβy

I2
αβz

I3
αβR

I4f(R)

qI5n`q
I6
n′`′r

I7
α r

I8
β R

I9
αβ

→ {g, I1, I2, I3, I4, I5, I6, I7, I8, I9, I10} (5.47)

with the following correspondence between f(R) and I10:

f(R) = {1, sin qn`R, sin qn′`′R, cos qn`R, cos qn′`′R}
→ I10 = {0, 1, 2, 3, 4} . (5.48)

A recursive function can be written to manipulate these encoded terms and perform the

differentiation by the D̂`m, which can themselves be generated using the recursion rules

for the associated Legendre polynomials. Thus it is straightforward to write a code which

starts from equation 5.14 and generates the results up to arbitrary values of ` for Sαβ

and Tαβ for the cases when Rαβ 6= 0. The results for Rαβ = 0 are simple enough to be

coded within the program which uses this basis. For a given ionic configuration the matrix

elements between the basis states can be calculated initially and stored on disk for use
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during the calculation.

The cost of calculating the analytic matrix elements increases dramatically as higher

angular momentum components are included. In general, a much smaller value of `max is

used than is “recommended” by the kinetic energy cut-off. However, these basis functions

are being used to describe functions localised in overlapping regions, and in this instance,

a degree of “under-completeness” is desirable. If the basis functions formed a complete

set (up to a given kinetic energy cut-off) in each support region, then a variation which is

confined to the overlapping region can be equally described by variations in either region.

Symmetric and antisymmetric combinations of these variations can be formed, the anti-

symmetric variation vanishing and thus leaving the density-matrix invariant. Therefore

this superposition results in directions in the parameter space with very small curvature

which degrade the efficiency of minimisation algorithms (see section 6.2.3). When working

with overlapping support functions, it is therefore better to treat `max as a convergence

parameter along with, rather than derived from, Ecut.





Chapter 6

Penalty Functionals

In this chapter we first outline Kohn’s derivation of a variational principle for a gener-

alised energy functional which includes a penalty functional to impose the idempotency

constraint. We show that this functional is non-analytic at its minimum and therefore

incompatible with efficient minimisation algorithms, using conjugate gradients as an ex-

ample.

We then outline an original scheme to use well-behaved penalty functionals to approx-

imately impose the idempotency constraint. The density-matrix which minimises these

generalised energy functionals is therefore only an approximation to the true ground-state

density-matrix, but the resulting error in the total energy can be corrected to obtain ac-

curate estimates of the true ground-state energy.

6.1 Kohn’s method

6.1.1 Variational principle

As mentioned in section 4.4.3, Kohn [135] has suggested the use of a penalty functional to

impose the idempotency condition, and has proved a variational principle based upon it.

We consider trial density-matrices ρ(r, r′) expressed in diagonal form with real orthonormal

extended orbitals {ϕi(r)} and occupation numbers {fi}:

ρ(r, r′) =
∑

i

fi ϕi(r)ϕi(r
′). (6.1)

The functional Q[ρ;µ, α] is then formed:

Q[ρ;µ, α] ≡ ENI[ρ
2]− µN [ρ2] + αP [ρ] (6.2)

75



76 Linear-scaling methods in ab initio quantum-mechanical calculations

in which

ENI[ρ
2] ≡ 2

∫
dr′

{[
−1

2
∇2

rρ
2(r, r′)

]
r=r′

+ ρ2(r′, r′)VKS(r
′)

}
= 2

∑

i

f 2
i εi, (6.3)

N [ρ2] ≡ 2
∫

dr ρ2(r, r) = 2
∑

i

f 2
i , (6.4)

P [ρ] ≡
[∫

dr
(
ρ2(1− ρ)2

)
(r, r)

] 1
2

=

[∑

i

f 2
i (1− fi)

2

] 1
2

, (6.5)

and where µ is the chemical potential and α is a positive real parameter.

Kohn proves the following variational principle: that for some α > αc, the minimum

value of Q[ρ;µ, α] is obtained for the idempotent ground-state density-matrix ρ0 and that

the minimum value is the ground-state grand potential i.e.

min
ρ
Q[ρ;µ, α] = ENI[ρ

2
0]− µN [ρ2

0] =
∑

i,ε
(0)
i ≤µ

(ε
(0)
i − µ) (6.6)

in which the {ε(0)
i } are the exact eigenvalues of the self-consistent Hamiltonian, generated

by the ground-state density-matrix ρ0.

The critical value of α, denoted αc, is given by

αc = max
P′

∣∣∣∣∣
dΩ(P ′)

dP ′
∣∣∣∣∣ (6.7)

in which Ω(P ′) is the conditional minimum defined by

Ω(P ′) = min
P[ρ]=P ′

(
ENI[ρ

2]− µN [ρ2]
)

(6.8)

i.e. the minimum grand potential for all trial density-matrices which give a penalty func-

tional value of P ′. Clearly

αc ≥
∣∣∣∣∣
dΩ(P ′)

dP ′
∣∣∣∣∣P′=0

= 2




∑

i,ε
(0)
i ≤µ

(ε
(0)
i − µ)2




1
2

(6.9)

although this is only a lower bound on αc.

Kohn’s variational principle is based on the non-interacting energy ENI[ρ
2]. We now

present a simple modification of this functional based upon self-consistent variation of the

interacting energy. Consider the functional

Q̃[ρ;µ, α] = E[ρ]− µN [ρ] + αP [ρ] (6.10)
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Figure 6.1: Behaviour of Kohn’s penalty functional P[ρ] when a single occupation
number fi is varied and all others are zero or unity.

in which E[ρ] is the interacting energy, and ρ is a positive semi-definite trial density-matrix.

A given set of occupation numbers {fi} fixes the value of the penalty functional P [ρ] and

variation of Q̃[ρ;µ, α] with respect to the orbitals {ϕi(r)} at fixed occupation numbers and

subject to the orthonormality constraint yields Kohn-Sham-like equations. Self-consistent

variation of the occupation numbers {fi} (i.e. allowing the orbitals to relax, as in section

4.2) yields
∂Q̃[ρ;µ, α]

∂fi
= 2(εi − µ) +

α

P [ρ]
fi(1− fi)(1− 2fi). (6.11)

In the case of idempotent density-matrices, for which P [ρ] = 0, we obtain the special cases

∂Q̃[ρ;µ, α]

∂fi

∣∣∣∣∣
fi=(0±,1±)

= 2(εi − µ)± α. (6.12)

For this functional the critical value of α, again denoted αc, is given by

αc = max
ρ
|2(εi − µ)| (6.13)

where the maximum is strictly over those density-matrices searched during the minimisa-

tion. For α > αc the total functional Q̃[ρ;µ, α] takes its minimum value when fi = 0, 1

for εi > µ and εi < µ respectively. In particular, for the ground-state density-matrix

ρ0, the functional is strictly increasing with respect to all variations in occupation num-
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bers. The discontinuity in the occupation number derivative of the penalty functional at

idempotency is required because of the non-variational behaviour of the total energy with

respect to these variations (section 4.2). The behaviour of the penalty functional for un-

constrained occupation number variation is plotted in figure 6.1, and in figure 6.2 the total

functional is sketched schematically for several representative values of the parameter α.

This demonstrates how the minimising density-matrix is idempotent only for α ≥ αc.

−0.5 0.0 0.5 1.0 1.5
fi

−0.5 0.0 0.5 1.0 1.5
fi

−0.5 0.0 0.5 1.0 1.5
fi

α<αc α=αc α>αc

Figure 6.2: Schematic illustration of Kohn’s variational principle: behaviour of the
total energy (black) and total functional (red) for representative values of α.

6.1.2 Implementation problems

The conjugate gradients algorithm for minimising functions is described in appendix B.

Throughout the lengthy derivation it is clear that the useful results obtained and the

remarkably simple final result are due to the special properties of quadratic functions.

Any function may be expanded in the form of a Taylor series about an analytic point,

and around a minimum where the first order term from the gradient vanishes, a quadratic

function is generally a good approximation. However, we note that the Kohn penalty

functional has a branch point from the square-root function exactly at the ground-state

minimum which we seek, and so the function cannot be Taylor-expanded there. Local

information from the gradient cannot be used to infer the global shape of the function.

This is illustrated in figure 6.3 for the case of a parabolic interpolation to find a line

minimum based upon the gradient and a trial step, but the problem is even worse in the

multi-dimensional space since the “conjugate” directions constructed from the gradients

will not point in the direction of the ground-state minimum.

This problem is reflected in the very poor convergence when an attempt is made to

minimise the functional using conjugate gradients: the steepest descents method actually
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Figure 6.3: Failure of quadratic interpolation for Kohn’s penalty functional.

performs better because it does not assume global quadratic behaviour. Also, the penalty

functional does not vanish at the minimum sufficiently quickly as the parameter α is

increased. However, the root-mean-square error in the occupation numbers δf , given by

δf =
P [ρ]√
N/2

(6.14)

in fact decays more rapidly, so that the total energy calculated at the minimum is quite

accurate, although it is neither variational nor an upper bound. Also, although the total

functional Q̃[ρ;µ, α] decreases monotonically, the total energy does not. Thus no advantage

is gained by using the variational property, since it can only be applied to the total energy

when P [ρ] = 0. The variational property of the total functional is that it is minimal at the

ground-state, but this minimum is defined in terms of the functional taking its minimum

value there, not in terms of a vanishing gradient (the gradient being undefined at the

ground-state). Because of the non-variational behaviour of the total energy with respect

to the occupation numbers at the ground-state, it is impossible to construct a penalty

functional which has a continuous first derivative at the ground-state and also results in a

variational principle for the total energy.

In figure 6.4 we present the results of tests on an 8-atom silicon cell to demonstrate



80 Linear-scaling methods in ab initio quantum-mechanical calculations

0

20

40

60

80

100

Penalty functional at minimum

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RMS deviation of occupation numbers

α /eV

αP [ρ] /eV δf

Figure 6.4: Convergence properties of Kohn’s penalty functional: behaviour of penalty
functional and occupation numbers with α.

the behaviour of the functional. As the penalty functional parameter α is increased, both

the contribution of the penalty functional to the total functional αP [ρ], and the root

mean square error in the occupation numbers δf decrease, but not rapidly enough with α

since the number of iterations required to reach convergence increases with α making the

calculations too expensive for practical applications. For example, the number of iterations

required to converge the total functional to 0.01 eV per atom increases by a factor of more

than ten when α is increased from 100 eV to 1000 eV. Even with the smaller value for α,

the rate of convergence is much slower than traditional methods, and this is due to the

incompatibility of the functional with the conjugate gradients scheme.

6.2 Corrected penalty functional method

6.2.1 Derivation of the correction

In this section we present a new method to perform total energy calculations using a

penalty functional to enforce idempotency approximately. We define a generalised energy
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functional Q[ρ;α] for trial density-matrices ρ by

Q[ρ;α] = E[ρ] + αP [ρ]. (6.15)

P [ρ] represents the penalty functional, which in this new method is required to be analytic

at all points so that efficient minimisation schemes such as conjugate gradients may be

applied. The simplest example is to take the square of Kohn’s penalty functional i.e.

P [ρ] =
∫

dr
[
ρ2 (1− ρ)2

]
(r, r) =

∑

i

f 2
i (1− fi)

2 , (6.16)

but other choices are also possible (section 6.2.2). This penalty functional is sketched in

figure 6.5. Since the penalty functional becomes large as the density-matrix becomes less
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Figure 6.5: One possible choice of analytic penalty functional.

idempotent, minimisation of the total functionalQ[ρ;α] is stable against run-away solutions

in which fi → ∞ for occupied bands and fi → −∞ for unoccupied bands. However, as

illustrated in the sketch in figure 6.6, the minimising density-matrix is only approximately

idempotent. In this particular case of an unoccupied band, the total functional is minimised

when this band is negatively occupied i.e. for fi < 0. In general the minimising density-

matrix ρ̄ will have eigenvalues lying outside the interval [0, 1], so that the energy calculated

from such a density-matrix will be below the true ground-state energy.
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Figure 6.6: Schematic illustration of the analytic penalty functional: behaviour of the
total energy (black) and total functional (red) with respect to a single occupation number
for an unoccupied band.

We denote the set of occupation numbers which minimise the total functional Q[ρ;α]

by {f̄i} and the errors in these occupation numbers with respect to idempotency by f̄i =

f
(0)
i + δfi where f

(0)
i = 1 for occupied bands and f

(0)
i = 0 for unoccupied bands. Since

Q[ρ;α] is minimised by ρ̄, it is a minimum with respect to all changes in the occupation

numbers which maintain the normalisation constraint

2
∫

dr ρ(r, r) = 2
∑

i

fi = N (6.17)

which is imposed by introducing a Lagrange multiplier λ:

∂

∂fi


Q[ρ;α]− λ


2

∑

j

fj −N






fi=f̄i

= 0. (6.18)

Using Janak’s theorem for the derivative of the energy functional we obtain

ε̄i + αf̄i
(
1− f̄i

) (
1− 2f̄i

)
− λ = 0 (6.19)
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in which {ε̄i} are the eigenvalues of the Hamiltonian obtained from the electronic den-

sity n̄(r) = 2ρ̄(r, r) and are therefore different from the true ground-state eigenvalues.

Assuming α to be sufficiently large so that the errors {δfi} are small,

δfi ≈ − ε̄i − λ

α
. (6.20)

Application of the normalisation constraint 6.17 requires
∑

i

δfi = 0 from which we obtain

the value of the Lagrange multiplier λ:

λ =
2

N

∑

i

ε̄i (6.21)

which is the mean energy eigenvalue. The variance of the errors in the occupation num-

bers is thus related to the variance of the energy eigenvalues, scaled by the parameter α.

Therefore, as is intuitively expected, the errors in the occupation numbers decrease as α is

increased. More precisely, δfi ∝ α−1 and this behaviour is confirmed numerically in figure

6.7.
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Figure 6.7: Variation of the occupation number errors with α. Lines show the best fit
to α−1 behaviour.
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For small deviations from idempotency, the penalty functional P [ρ̄] ≈ ∑

i

δf 2
i so that the

penalty contribution to the minimised total functional, αP [ρ̄] also decreases in proportion

to α−1. Hence the energy approaches the true ground-state energy as α → ∞, again

with an error which decreases as α−1. This α−1 convergence is unsatisfactory for practical

applications, since it requires large values of α to obtain accurate estimates of the ground-

state energy, and for large values of α the penalty term dominates the total functional and

hinders efficient minimisation of the energy term. We now proceed to derive a correction

to the estimated energy which allows accurate values for the ground-state energy to be

obtained from the approximately idempotent density-matrices which minimise the total

functional.

At the minimum of the total functional,

∂Q[ρ;α]

∂fi

∣∣∣∣∣
fi=f̄i

= 0 =
∂E[ρ]

∂fi

∣∣∣∣∣
fi=f̄i

+ 2αf̄i
(
1− f̄i

) (
1− 2f̄i

)
(6.22)

and this expression can be used to construct a first order Taylor expansion for the total

energy with respect to the occupation numbers. We thus estimate the true ground-state

energy E0 to be

E0 = E[ρ0] ≈ E[ρ̄] + 2α
∑

i

f̄i
(
1− f̄i

) (
1− 2f̄i

)
δfi. (6.23)

For occupied bands, δfi = f̄i − 1 whereas for unoccupied bands δfi = f̄i so that

E0 ≈ E[ρ̄]− 2α
all∑

i

f̄i
(
1− f̄i

)2 (
1− 2f̄i

)
+ 2α

unocc∑

i

f̄i
(
1− f̄i

) (
1− 2f̄i

)
. (6.24)

The first term of the correction has been written as a sum over all bands so that it can

be expressed in terms of the trace 2αTr
[
ρ̄ (1− ρ̄)2 (1− 2ρ̄)

]
which can always be evalu-

ated in O(N) operations. The second term only contributes when unoccupied bands are

included in the calculation, which is not necessary for insulators. Since a single eigenvalue

of the (sparse) density-matrix can always be obtained in O(N) operations, it is possible

to evaluate the correction for a small number (¿ N) of unoccupied bands and retain the

linear-scaling. However, we note that the correction need only be calculated once the min-

imum of the total functional has been found, so that a single O(N2) step to obtain all of

the occupation numbers will still be a tiny fraction of the total computational effort.

The error in a Taylor expansion is generally estimated by considering the lowest order
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term omitted, which in this case is

1

2

∑

ij

δfi
∂2E[ρ]

∂fi∂fj

∣∣∣∣∣
fi=f̄i,fj=f̄j

δfj =
∑

ij

δfi
∂ε̄i
∂fj

∣∣∣∣∣
fj=f̄j

δfj ≈
∑

ij

δfiHijδfj (6.25)

where Hij is the chemical hardness matrix. Unfortunately this matrix is not guaranteed to

be either positive or negative definite, and so the estimate of the ground-state energy 6.24

is not a strict upper or lower bound to the true energy. As will be seen shortly, this error is

generally much smaller than other sources of error (such as the finite support region size,

with respect to which the energy does behave variationally) so that this is not an issue in

practice.

In figure 6.8 the energy, total functional and corrected energy are plotted for different

values of the parameter α. These results confirm the α−1 behaviour of the energy and

penalty functionals, and the error in the corrected energy even for α = 50 eV is smaller

than 10−4 eV per atom. Thus we have achieved our aim of being able to obtain accurate

estimates of the ground-state energy from approximate density-matrices which minimise

the total functional for values of α for which efficient minimisation is possible.
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Figure 6.8: Total energy, total functional and corrected energy versus α. Lines are best
fits to α−1 behaviour.
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6.2.2 Further examples of penalty functionals

Before studying the efficiency of the minimisation procedure when applied to the total

functional described above in section 6.2.1, we mention two further examples of penalty

functionals which are suitable for this approach.

The first is applicable for positive semi-definite trial density-matrices. This requirement

can be satisfied in practice by writing the density-kernel K in terms of an auxiliary matrix

T as K = TT † (see section 4.4.2). Since the eigenvalues of such a density-matrix must be

non-negative, variation of the energy functional alone is sufficient to drive the occupation

numbers of unoccupied bands to zero, and the penalty functional need only impose the

occupation numbers of the occupied bands to lie close to unity. An appropriate penalty

functional is then

P [ρ] =
∫

dr
[
ρ (1− ρ)2

]
(r, r) =

∑

i

fi (1− fi)
2 , (6.26)

and the corresponding energy correction is

E0 ≈ E[ρ̄]− α
all∑

i

(1− 3f̄i)(1− f̄i)
2 + α

unocc∑

i

(1− 3f̄i)(1− f̄i). (6.27)

Numerical investigation has shown that the occupation numbers of the unoccupied bands

do indeed become very small but positive when this scheme is used.

The second penalty functional is applicable only when no unoccupied bands are included

in the calculation. In this case, all of the occupation numbers should equal unity and so

an appropriate penalty functional is

P [ρ] =
∫

dr (1− ρ)2 (r, r) =
∑

i

(1− fi)
2 . (6.28)

The corresponding correction to the total energy in this case is

E0 ≈ E[ρ̄] + 2α
all∑

i

(1− f̄i)
2. (6.29)

Both of these penalty functionals have been tested, and the results are very similar to

those presented for the original functional in the previous section. These penalty function-

als are plotted in figure 6.9.
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Figure 6.9: Two further examples of analytic penalty functionals.

6.2.3 Minimisation efficiency

In this section we discuss the efficiency of the conjugate gradients algorithm to minimise the

total functional. We restrict the discussion to the penalty functional introduced in section

6.2.1. The total functional derived from this penalty functional appears to possess multiple

local minima since the penalty functional itself is minimal for all idempotent density-

matrices. However, most of these local minima do not correspond to density-matrices

obeying the correct normalisation constraint and are therefore eliminated by imposing

this constraint during the minimisation, as will be shown in chapter 7. Of the remaining

minima, only one corresponds to the situation in which the lowest bands are occupied, and

when the support functions are also varied, all other minima become unstable with respect

to this one (i.e. these are minima with respect to occupation number variations but not

orbital variations). Numerical investigations into this matter have been carried out and no

problems arising from multiple minima have been observed (the minimised total functional

has the same value independent of the starting point).

The efficiency with which the conjugate gradients scheme is able to minimise a function

is known to depend upon the condition number κ, the ratio of the largest curvature to the

smallest curvature at the minimum. The condition number may be calculated exactly by

determining the Hessian matrix at the minimum, but may also be estimated as follows [153].

Consider the minimising density-matrix ρ̄ expanded in terms of a set of orthonormal
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orbitals {ϕ̄i(r)}:
ρ̄(r, r′) =

∑

i

f̄iϕ̄i(r)ϕ̄i(r
′). (6.30)

Consider first perturbing the occupation numbers subject to the normalisation constraint

i.e. increasing the occupation of some orbital labelled J by x at the expense of another

orbital labelled I. The density-matrix becomes

ρ(r, r′) = ρ̄(r, r′)− xϕ̄I(r)ϕ̄I(r
′) + xϕ̄J(r)ϕ̄J(r

′) (6.31)

Defining Q̄ = Q[ρ̄;α] and using the orthonormality of the orbitals,

Q[ρ;α] = Q̄+ x(ε̄J − ε̄I)− α[2x{f̄I(1− 2f̄I)(1− f̄I) + f̄J(1− 2f̄J)(1− f̄J)}
− 2x2{1− 3f̄I(1− f̄I)− 3f̄J(1− f̄J)} − 4x3(1− f̄I − f̄J)− 2x4] (6.32)

and the curvature at the minimum is

∂2Q[ρ;α]

∂x2

∣∣∣∣∣
x=0

= 4α
[
1− 3f̄I(1− f̄I)− 3f̄J(1− f̄J)

]
. (6.33)

Assuming that ρ̄ is approximately idempotent so that both f̄I and f̄J are either roughly

zero or unity,
∂2Q[ρ;α]

∂x2

∣∣∣∣∣
x=0

≈ 4α (6.34)

i.e. to first order, the curvature is independent of the choice of orbitals I and J so that the

functional is spherical when this type of variation is considered, and the condition number

is approximately unity.

The second type of variation is a unitary transformation of the orbitals i.e. ϕI(r) =

(1− 1
2
x2)ϕ̄I(r)+xϕ̄J(r) and ϕJ(r) = (1− 1

2
x2)ϕ̄J(r)−xϕ̄I(r), which maintains normalisation

of the density-matrix to O(x2). In this case

ρ(r, r′) = ρ̄(r, r′) + x(f̄I − f̄J)ϕ̄I(r)ϕ̄J(r
′) + x(f̄I − f̄J)ϕ̄J(r)ϕ̄I(r

′)

+ x2(f̄J − f̄I)ϕ̄I(r)ϕ̄I(r
′) + x2(f̄I − f̄J)ϕ̄J(r)ϕ̄J(r

′) +O(x3) (6.35)

and similarly

Q[ρ;α] = Q̄+ x2(f̄I − f̄J)(ε̄J − ε̄I) +O(x3) (6.36)

so that
∂2Q[ρ;α]

∂x2

∣∣∣∣∣
x=0

= 2(f̄I − f̄J)(ε̄J − ε̄I). (6.37)

The maximum curvature is thus obtained when f̄I ≈ 1 and f̄J ≈ 0 and equals 2(ε̄max− ε̄min)
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where ε̄max and ε̄min are the maximum and minimum energy eigenvalues of the orbitals

{ϕ̄i(r)}. The minimum curvature is obtained when f̄I ≈ f̄J and is therefore

2(δfI − δfJ)(ε̄J − ε̄I) =
2(ε̄J − ε̄I)

2

α
=

2(∆ε̄)2

α
(6.38)

where ∆ε̄ is the minimum energy eigenvalue spacing. This curvature corresponds to unitary

changes confined within the occupied or unoccupied subspaces with no mixing between,

and the energy is indeed invariant under such changes. However, choosing to work with

localised functions essentially defines a particular unitary transformation for the wave-

functions, so that these variations are generally eliminated. If this is the case, then the

minimum curvature will then be obtained in the same way as the maximum curvature,

but seeking the minimum difference in energy eigenvalues between valence and conduction

bands, which is the band gap ε̄g. The minimum curvature is thus 2ε̄g and the condition

number is given by

κ =
ε̄max − ε̄min

ε̄g

. (6.39)

This is an encouraging result, since the condition number is independent of the system-size.

The length of the error vector after k iterations, ηk is related to κ by [154]

ηk ∝
(√

κ− 1√
κ+ 1

)k

(6.40)

and the number of iterations required to converge to a given precision is therefore propor-

tional to
√
κ in the limit of large κ, and so independent of system-size.

Reviewing the results for both types of variation, we note that the minimisation with

respect to occupation numbers (the first type) is very efficient, since κ ≈ 1, whereas the

minimisation with respect to orbitals is less efficient, depending upon the ratio of the total

width of the eigenvalue spectrum to the band gap. Preconditioning schemes to compress

the eigenvalue spectrum have been developed for use with plane-waves [81] and also with

B-splines [155], and a similar scheme for the spherical-wave basis functions would also

improve the rate of convergence. Nevertheless, we do not expect a significant change in the

number of conjugate gradient steps required to converge to the minimum as the system-

size increases. In practical implementations, discussed in chapter 7, these two types of

variation are not strictly separated, both the occupation numbers and the orbitals being

varied simultaneously, so that these results are hard to confirm numerically, although no

significant increase in the number of iterations required to converge to a given accuracy is

observed as the system-size increases.





Chapter 7

Computational implementation

In this chapter we describe how the corrected penalty functional method described in

section 6.2 has been implemented in a total energy computer code to perform linear-scaling

quantum-mechanical calculations on arbitrary systems.

As mentioned in section 4.6, the density-matrix is represented in the form

ρ(r, r′) = φα(r)K
αβφβ(r

′). (7.1)

We refer to the contravariant quantity Kαβ as the density-kernel, and the covariant quanti-

ties {φα(r)} are localised non-orthogonal support functions, which are themselves expanded

in terms of the spherical-wave basis-set of chapter 5:

φα(r) =
∑

n`m

cn`m(α) χα,n`m(r). (7.2)

We now proceed to express the total energy and penalty functional in terms of these

quantities, and also to calculate gradients with respect to the density-kernel and expansion

coefficients {cn`m(α) }. We will also discuss the implementation of the normalisation constraint

and also how the convergence might be improved by the use of a preconditioning scheme

for the gradients.

7.1 Total energy and Hamiltonian

A quantity which is frequently required is the overlap matrix Sαβ defined by

Sαβ =
∫

dr φβ(r)φα(r). (7.3)

91
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The overlap matrix elements between the spherical-wave basis functions can be calculated

analytically (section 5.4), and are denoted Sα,n`m;β,n′`′m′ where

Sα,n`m;β,n′`′m′ = 〈χα,n`m|χβ,n′`′m′〉 (7.4)

so that the overlap matrix elements are given by

Sαβ =
∑

n`m,n′`′m′
cn`m(α) Sα,n`m;β,n′`′m′c

n′`′m′
(β) (7.5)

recalling that the support functions may be assumed real in the case of Γ-point Brillouin

zone sampling.

7.1.1 Kinetic energy

The kinetic energy of the non-interacting Kohn-Sham system is given by

T J
s = −

∫
dr′

[
∇2

rρ(r, r
′)

]
r=r′

= 2KαβTβα (7.6)

in which

Tαβ = −1

2

∫
dr φα(r)∇2

rφβ(r) (7.7)

are the matrix elements of the kinetic energy operator in the representation of the support

functions. Since all of the matrix elements between the spherical-wave basis functions can

be calculated analytically,

Tαβ =
∑

n`m,n′`′m′
cn`m(α) Tα,n`m;β,n′`′m′c

n′`′m′
(β) (7.8)

where T denotes matrix elements of the kinetic energy operator between spherical-wave

basis functions.

7.1.2 Hartree energy and potential

The Hartree and exchange-correlation terms are calculated by determining the electronic

density on a real-space grid n(r), and Fast Fourier Transforms (FFTs) are used to transform
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between real- and reciprocal-space1 to obtain ñ(G). The Hartree energy is then given by

EH =
1

2

∫
dr dr′

n(r)n(r′)
|r− r′| =

2π

Ωcell

∑

G 6=0

|ñ(G)|2
G2

(7.9)

where Ωcell is the volume of the supercell and the (infinite) G = 0 term is omitted because

the system is charge neutral overall. This term is therefore cancelled by similar terms in

the ion-ion and electron-ion interaction energies. The Hartree potential in real-space is

given by

VH(r) =
∫

dr′
n(r′)
|r− r′| (7.10)

but is calculated in reciprocal-space as

ṼH(G) =
4πñ(G)

ΩcellG2
(7.11)

and then transformed back into real-space by a FFT.

7.1.3 Exchange-correlation energy and potential

Having calculated the electron density on the grid points, the exchange-correlation energy

is obtained by summing over those grid points

Exc = δω
∑
r

n(r)εxc(n(r)) (7.12)

in the local density approximation. δω is the volume of the supercell divided by the number

of grid points. The exchange-correlation potential is similarly calculated at each grid point

as

Vxc(r) =

[
d

dn
{nεxc(n)}

]

n=n(r)

. (7.13)

In practice, the values of εxc(n) and d
dn

[nεxc(n)] are tabulated for various values of the

electronic density n and then interpolated during the calculation.

1The conventions used here for discrete Fourier transforms are

ñ(G) =
∑
r

n(r) exp(−iG · r) ; n(r) =
1

Ωcell

∑

G

ñ(G) exp(iG · r).
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7.1.4 Local pseudopotential

Like the Hartree potential, the local pseudopotential is also calculated in reciprocal-space

as

Ṽps,loc(G) =
∑
s

ṽsps,loc(G)Ss(G) (7.14)

where the summation is over ionic species s, ṽsps,loc(G) is the local pseudopotential for an

isolated ion of species s in reciprocal-space and Ss(G) is the structure factor for species s

defined by

Ss(G) =
∑
α

exp[−iG · rsα] (7.15)

where the sum is over all ions α of species s with positions rsα. We note that in general

the calculation of the structure factor is an O(N2) operation, but since it only has to

be calculated once for each atomic configuration, it is not a limiting factor of the overall

calculation at this stage. Within the quantum chemistry community, work on generalised

multipole expansions and new algorithms [156–162] has led to the development of methods

to calculate Coulomb interaction matrix elements which scale linearly with system-size.

The local pseudopotential energy can be calculated in reciprocal-space as

Eps,loc =
∫

dr Vps,loc(r)n(r)

=
∑

G6=0

∑
s

ṽsps,loc(G)Ss(G)ñ∗(G) +
∑
s

NsE
s
ps,core

= 2KαβVloc,βα (7.16)

where Es
ps,core is the pseudopotential core energy, and Ns = Ss(G = 0) the number of ions

of species s. The matrix elements Vloc,αβ are defined by

Vloc,αβ =
∫

dr φα(r)Vps,loc(r)φβ(r). (7.17)

The Hartree potential and local pseudopotential can be summed and then transformed

back together into real-space and added to the exchange-correlation potential to obtain

the local part of the Kohn-Sham potential in real-space.

We note that the FFT is not strictly an O(N) operation but an O(N logmN) operation

(where m is some small number which depends upon the prime factors of the number of

grid points), but in practice (section 9.2) this scaling is not observed.
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7.1.5 Non-local pseudopotential

The non-local pseudopotential energy is given by

Eps,NL =
∫

dr dr′ ρ(r, r′)Vps,NL(r′, r) = 2KαβVNL,βα. (7.18)

The matrix elements of the non-local pseudopotential in the representation of the support

functions VNL,αβ are calculated by summing over all ions whose cores overlap the support

regions of φα and φβ, and using the method described in section 5.6.2 to calculate the

spherical-wave basis function matrix elements Vα,n`m;β,n′`′m′ analytically. The result is

therefore

VNL,αβ =
∑

n`m,n′`′m′
cn`m(α) Vα,n`m;β,n′`′m′c

n′`′m′
(β) (7.19)

which is of exactly the same form as the kinetic energy, so that in practice the basis function

matrix elements for the kinetic energy and non-local pseudopotential are summed and the

two contributions to the energy combined.

7.2 Energy gradients

Having calculated the total energy, both the density-kernel Kαβ and the expansion coeffi-

cients for the localised orbitals {cn`m(α) } are varied. Because of the non-orthogonality of the

support functions, it is necessary to take note of the tensor properties of the gradients [163],

as noted in section 4.6.

7.2.1 Density-kernel derivatives

The total energy depends upon Kαβ both explicitly and through the electronic density

n(r). We use the result
∂Kij

∂Kαβ
= δiαδ

j
β. (7.20)

Kinetic and pseudopotential energies

From equations 7.6, 7.16 and 7.18 we have that

Ekin,ps = T J
s + Eps,loc + Eps,NL = 2K ij(T + Vloc + VNL)ji (7.21)

and therefore
∂Ekin,ps

∂Kαβ
= 2(T + Vloc + VNL)βα. (7.22)
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Hartree and exchange-correlation energies

The sum of the Hartree and exchange-correlation energies, EHxc depends only on the density

so that
∂EHxc

∂Kαβ
=

∫
dr

δEHxc

δn(r)

∂n(r)

∂Kαβ
. (7.23)

The functional derivative of the Hartree-exchange-correlation energy with respect to the

electronic density is simply the sum of the Hartree and exchange-correlation potentials,

VHxc(r). The electronic density is given in terms of the density-kernel by

n(r) = 2φi(r)K
ijφj(r) (7.24)

so that we obtain
∂n(r)

∂Kαβ
= 2φα(r)φβ(r). (7.25)

Finally, therefore
∂EHxc

∂Kαβ
= 2

∫
dr φβ(r)VHxc(r)φα(r) = 2VHxc,βα. (7.26)

Total energy

Defining the matrix elements of the Kohn-Sham Hamiltonian in the representation of the

support functions by

Hαβ = Tαβ + VHxc,αβ + Vloc,αβ + VNL,αβ (7.27)

the derivative of the total energy with respect to the density-kernel is simply

∂E

∂Kαβ
= 2Hβα. (7.28)

7.2.2 Support function derivatives

Again we can treat the kinetic and pseudopotential energies together, and the Hartree and

exchange-correlation energies together. We use the result that

∂φi(r)

∂φα(r′)
= δαi δ(r− r′). (7.29)

Kinetic and pseudopotential energies

We define the kinetic energy operator T̂ = −1
2
∇2, whose matrix elements are

Tij =
∫

dr φi(r)T̂ φj(r). (7.30)
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Since the operator is Hermitian,

δTij
δφα(r)

= δαi T̂ φj(r) + δαj T̂ φi(r). (7.31)

Therefore

δT J
s

δφα(r)
= 2

δ

δφα(r)

(
KijTji

)
= 2Kij δTji

δφα(r)

= 4KαβT̂ φβ(r). (7.32)

The derivation for the pseudopotential energy is identical with the replacement of T̂ by

the pseudopotential operator, and so the result for the sum of these energies is just

δEkin,ps

δφα(r)
= 4Kαβ

(
T̂ + V̂ps,tot

)
φβ(r). (7.33)

Hartree and exchange-correlation energies

Again this gradient is derived by considering the change in the electronic density.

∂n(r′)
∂φα(r)

= 2
[
Kαjδ(r− r′)φj(r′) + φi(r

′)δ(r− r′)K iα
]
. (7.34)

Therefore

δEHxc

δφα(r)
=

∫
dr′

δEHxc

δn(r′)
∂n(r′)
∂φα(r)

=
∫

dr′ VHxc(r
′)
∂n(r′)
∂φα(r)

= 4KαβV̂Hxcφβ(r) (7.35)

Total energy

The gradient of the total energy with respect to changes in the support functions is

δE

δφα(r)
= 4KαβĤφβ(r) (7.36)

where Ĥ is the Kohn-Sham Hamiltonian which operates on φβ(r).

7.3 Penalty functional and electron number

The penalty functional P [ρ] is defined by

P [ρ] =
∫

dr
(
ρ2(1− ρ)2

)
(r, r)
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=
∫

dr1dr2dr3dr4 ρ(r1, r2)ρ(r2, r3) [δ(r3, r4)− ρ(r3, r4)] [δ(r4, r1)− ρ(r4, r1)]

= KijSjkK
klSlm(δmp −KmnSnp)(δ

p
i −KpqSqi). (7.37)

The derivative with respect to the density-kernel is then

∂P [ρ]

∂Kαβ
= 2SβiK

ijSjk(δ
k
m −KklSlm)(δmα − 2KmnSnα). (7.38)

The penalty functional depends implicitly upon the support functions though the overlap

matrix:
δSij
δφα(r)

= δαi φj(r) + δαj φi(r) (7.39)

so that
δP [ρ]

δφα(r)
= 4KαiSijK

jk(δmk − SklK
lm)(δβm − 2SmnK

nβ)φβ(r). (7.40)

For the sake of completeness, we now describe the expressions for the electron number and

its derivatives.

N = 2
∫

dr ρ(r, r) = 2KijSji (7.41)

∂N

∂Kαβ
= 2Sβα (7.42)

δN

δφα(r)
= 2Kαβφβ(r) (7.43)

7.4 Physical interpretation

At this stage we examine the energy gradients derived in section 7.2. At the minimum of

the total functional Q[ρ;α],

∂Q[ρ;α]

∂Kαβ
= 0 = 2Hβα + 2α [SKS(1−KS)(1− 2KS)]βα . (7.44)

Making the Löwdin transformation of this gradient into the representation of a set of

orthonormal orbitals (using the results of section 4.6) yields

2S
1
2

[
H̃ + αK̃(1− K̃)(1− 2K̃)

]
S

1
2 = 0 (7.45)

which (pre- and post-multiplying by S−
1
2 ) simplifies to

H̃ + αK̃(1− K̃)(1− 2K̃) = 0. (7.46)
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This result shows that at the minimum, K̃ and H̃ can be diagonalised simultaneously, and

will therefore commute. The result of the variation of the density-kernel is to make the

density-matrix commute with the Hamiltonian in the representation of the current support

functions. Transforming to the diagonal frame by making a unitary transformation (the

eigenvalues of K̃ being fi and those of H̃ being εi) we obtain the following relationship:

εi + αfi(1− fi)(1− 2fi) = 0. (7.47)

For the derivative with respect to the support functions we have

δQ[ρ;α]

∂φα(r)
= 0 = 4

{
KαβĤ + α[KSK(1− SK)(1− 2SK)]αβ

}
φβ(r) (7.48)

which can again be transformed first into an orthonormal representation defined by the

Löwdin transformation:

ϕα(r) = φβ(r)S
− 1

2
βα (7.49)

to obtain

δQ[ρ;α]

δϕα(r)
=

∫
dr′

δQ[ρ;α]

δφβ(r′)
∂φβ(r

′)
∂ϕα(r)

= S
1
2
αβ

δQ[ρ;α]

δφβ(r)

= 4S
1
2
αiK

ij
[
Ĥ + αSK(1− SK)(1− 2SK)

]k
j
S

1
2
klϕl(r)

= 4
[
K̃

{
Ĥ + αK̃(1− K̃)(1− 2K̃)

}]
αβ
ϕβ(r). (7.50)

Assuming that we have performed the minimisation with respect to the density-kernel for

the current support functions, transforming to the representation which simultaneously

diagonalises the Hamiltonian and density-matrix, by the unitary transformation ψi(r) =

ϕα(r)Uαi, yields

δQ[ρ;α]

δψi(r)
= U †iα

δQ[ρ;α]

δϕα(r)

= 4U †ij
{
Ĥδjk + α [SK(1− SK)(1− 2SK)]jk

}
Uklψl(r)

= 4fi
[
Ĥ + αfi(1− fi)(1− 2fi)

]
ψi(r) (7.51)

which is a Kohn-Sham-like equation, but where the energy eigenvalue εi does not explicitly

appear since no orthonormalisation constraint is explicitly applied. Using equation 7.47,

however, yields
δQ[ρ;α]

δψi(r)
= 0 = 4fi

[
Ĥ − εi

]
ψi(r) (7.52)

and so, at least for fi 6= 0, we see that the support function variations are equivalent to
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making the related wave-functions obey the Kohn-Sham equations. The factor of fi will

slow this convergence for unoccupied bands, since for fi ≈ 0 the gradient is small. In the

next section (7.5) we therefore turn our attention to a potential method for eliminating

this problem.

7.5 Occupation number preconditioning

The eigenvalues of the Hessian at a stationary point determine the nature and shape of that

stationary point. Thus the shape of the ground-state minimum of an energy functional

is determined by the eigenvalues of that functional. For the Kohn-Sham scheme these

eigenvalues are the {εi} and the narrower the eigenvalue spectrum, the more “spherical”

the minimum, and the easier the functional is to minimise. From equation 4.9 we note

that when partial occupation numbers are introduced, the relevant eigenvalue spectrum

becomes {fiεi}. When conduction bands are included in a calculation, their occupation

numbers will be vanishingly small near the ground-state minimum, which will therefore be

very aspherical, and convergence of these bands will become very slow. This problem has

been addressed in the study of metallic systems [164,165] by the method of preconditioning

which changes the metric of the parameter space to compress the eigenvalue spectrum and

make the minimum more spherical.

With reference to the results in appendix B, we introduce a metric, represented by the

matrix M, such that a new set of variables (denoted by a tilde) is introduced:

x̃ = M · x (7.53)

and so that the new gradients are related to the old gradients by

g̃ = M−1 · g. (7.54)

In the new metric, the conjugate directions are defined (see appendix B) by

p̃r+1 = −g̃r+1 + β̃rp̃r (7.55)

β̃r =
g̃r+1 · g̃r+1

g̃r · g̃r (7.56)

where we have adopted the Fletcher-Reeves method (B.22) for calculating βr. The line

minimum is given by

x̃r+1 = x̃r + αrp̃r (7.57)
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which can be rewritten in terms of the original variables as

M· xr+1 = M · xr + αrp̃r

⇒ xr+1 = xr + αrM−1 · p̃r. (7.58)

This identifies M−1 · p̃r as the set of preconditioned conjugate gradients for the original

variables in the original space. These directions {Pr} are thus given by

Pr+1 = M−1 · p̃r+1 = −M−1 · g̃r+1 + β̃rM−1 · p̃r = −M−2 · gr+1 + β̃rPr (7.59)

so that the gradients to be used for the preconditioned search are

Gr = M−2 · gr (7.60)

with mixing factor

β̃r =
g̃r+1 · g̃r+1

g̃r · g̃r =
gr+1 · M−2 · gr+1

gr · M−2 · gr =
Gr+1 · gr+1

Gr · gr . (7.61)

It is observed that defining β̃r in terms of the preconditioned gradients alone does not

interfere with the minimisation procedure, so that in practice

β̃r =
Gr+1 ·Gr+1

Gr ·Gr

. (7.62)

In order to apply this scheme here, we choose to make the metric M diagonal in the

representation of the Kohn-Sham orbitals. In the original variables {xi} (the subscript

i labels a component of a vector) the minimum can be expanded as
∑
i fiεix

2
i so that

the scaled variables {x̃i} defined by x̃i = m(i)xi =
√
fixi (where Mij = m(i)δij) produce

the desired compression since in terms of the new variables, the minimum has the form
∑
i εix̃

2
i . In the representation of the Kohn-Sham orbitals, the gradient of the functional

Q[ρ;α] (7.52) becomes

4m−2
(i)

[
fi

{
Ĥ − εi

}]
ψi(r) = 4

[
Ĥ − εi

]
ψi(r) (7.63)

in which we see that the factor of fi in front of the Ĥ operator has been cancelled so that

the effect of the gradient is now the same on both occupied and unoccupied bands, and

these bands should now converge at the same rate.

We now transform the preconditioned gradient back to the support function represen-
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tation using
δQ[ρ;α]

δφα(r)
= Vαi

δQ[ρ;α]

δψi(r)
(7.64)

where V = S−
1
2U from 4.78 and U is a unitary matrix. Thus the preconditioned gradient

we require is

4Vαi
[
Ĥ + αfi(1− fi)(1− 2fi)

]
ψi(r) = 4

[
S−1
αβ Ĥ + α (K(1− SK)(1− 2SK))αβ

]
φβ(r)

(7.65)

from the properties of the matrix V (4.79, 4.80). We see that the gradient has thus been

pre-multiplied by the matrix (KS)−1 i.e. in the support function representation, the metric

M is (KS)
1
2 .

Although the overlap matrix S is a sparse matrix for localised support functions, its

inverse S−1 is not sparse in general, so that this scheme is not straightforward to implement.

For a sufficiently diagonally dominant overlap matrix, it is possible to approximate the

inverse in the following manner. We write S = D+E where D contains only the diagonal

elements of S and E contains the off-diagonal elements. D is thus trivial to diagonalise.

Writing S = D(1 + D−1E) we have S−1 = (1 + D−1E)−1D−1 and if S is diagonally

dominant, the elements of the matrix D−1E are small so that we can approximate the

inverse of the term in brackets. If the elements of a matrix M are small then

(1 +M)−1 = 1−M +M2 −M3 +O(M4)

=
∞∑

n=0

(−1)nMn. (7.66)

When the first few terms of equation 7.66 are applied to the inverse overlap matrix we

obtain

S−1 = (1−D−1E +D−1ED−1E − . . .)D−1

= D−1 −D−1ED−1 +D−1ED−1ED−1 − . . . (7.67)

This expression could be used to obtain a good approximation to the inverse overlap matrix,

which may be sufficient for preconditioning, but there is the danger that, particularly

for large systems, the overlap matrix may become singular and the performance of the

algorithm would deteriorate. In the following section, however, we show that the correct

preconditioned gradient does not involve the inverse of the overlap matrix.
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7.6 Tensor properties of the gradients

We have already noted that it is important to take note of the tensor properties of quan-

tities when non-orthogonal functions are involved. In particular, the gradient of the scalar

functional with respect to the contravariant density-kernel is a covariant quantity which

should not be directly added to the contravariant density-kernel, but should first be con-

verted into contravariant form using the metric tensor Sαβ = S−1
αβ . Thus the correct search

direction for the density-kernel variation is Λαβ given by

Λαβ = Sαi
∂Q[ρ;α]

∂Kji
Sjβ

= 2S−1
αi [H + αSKS(1−KS)(1− 2KS)]ij S

−1
jβ

= 2(S−1HS−1)αβ + 2α [K(1− SK)(1− 2SK)]αβ . (7.68)

While the penalty functional derivative is simplified, the energy derivative picks up two

factors of the inverse overlap matrix, which, as in the case of occupation number precon-

ditioning, makes this difficult to implement. Neglecting this conversion of the covariant

gradient to its contravariant form corresponds to approximating the overlap matrix by

the identity. Thus the covariant gradient corresponds to taking the first term only in the

series expansion of the overlap matrix inverse in equation 7.66. Again, neglect of this cor-

rection may lead to a deterioration in the efficiency of the minimisation procedure as the

system-size increases.

We now consider the contravariant gradient of the functional with respect to the co-

variant support functions. This is a first-rank tensor quantity whereas the density-kernel

gradient is a second-rank tensor. The correct covariant gradient is thus δφα(r) given by

δφα(r) = Sαβ
δQ[ρ;α]

δφβ(r)

= 4Sαβ
[
KβγĤ + α[KSK(1− SK)(1− 2SK)]βγ

]
φγ(r)

= 4(SK)βα
{
Ĥδγβ + α [SK(1− SK)(1− 2SK)]γβ

}
φγ(r). (7.69)

The covariant preconditioned gradient in particular turns out to be

δφα(r) = 4
{
Ĥδβα + α [SK(1− SK)(1− 2SK)] βα

}
φβ(r) (7.70)

so that the factor of the inverse overlap matrix is now eliminated.
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7.7 Practical details

In this section we outline a number of details concerning the implementation of the penalty

method. These concern the derivatives of the functional with respect to the expansion

coefficients for the support functions {cn`m(α) }, the imposition of the normalisation constraint

and the general outline of the scheme.

7.7.1 Expansion coefficient derivatives

The support functions are expanded in spherical-wave basis functions:

φα(r) =
∑

n`m

cn`m(α) χα,n`m(r). (7.71)

For a functional of the support functions f [{φα}], the derivative with respect to the ex-

pansion coefficients is

∂f [{φα}]
∂cn`m(β)

=
∑
γ

∫
dr

δf [{φα}]
δφγ(r)

∂φγ(r)

∂cn`m(β)

=
∑
γ

∫
dr

δf [{φα}]
δφγ(r)

δβγχγ,n`m(r)

=
∫

dr
δf [{φα}]
δφβ(r)

χβ,n`m(r). (7.72)

For example, for the derivative of the total energy,

δE[ρ]

δφα(r)
= 4KαβĤφβ(r), (7.73)

we obtain

∂E[ρ]

∂cn`m(β)

= 4Kβγ
∫

dr χβ,n`m(r)Ĥφγ(r)

= 4Kβγ
∑

n′`′m′
〈χβ,n`m|Ĥ|χγ,n′`′m′〉cn′`′m′(γ) (7.74)

in which 〈χβ,n`m|Ĥ|χγ,n′`′m′〉 = Hβ,n`m;γ,n′`′m denotes the matrix element of the Kohn-Sham

Hamiltonian with respect to the spherical-wave basis functions.

7.7.2 Normalisation constraint

We choose to minimise the total functional whilst constraining the normalisation of the

density-matrix to the correct value. This is achieved firstly by projecting all gradients to
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be perpendicular to the gradient of the electron number, thus maintaining the electron

number to first order, and secondly by re-converging the electron number to its correct

value before each evaluation of the total functional.

Density-kernel variation

In section 7.3 the electron number gradient with respect to the density-kernel, which is

here denoted ∆, is given as
∂N

∂Kαβ
= 2Sβα = ∆αβ. (7.75)

The density-kernel along this search direction ∆ is parameterised by λ as

K(λ) = K(0) + λ∆ (7.76)

where K(0) denotes the initial density-matrix. The electron number, given by N =

2Tr(KS) thus behaves linearly:

N(λ) = N(0) + 2λTr(∆S)

= N(0) + 4λTr(S2) (7.77)

and it is a trivial matter to calculate the required value of λ to return the electron number

to its correct value.

In general during the minimisation, the search direction is Λ, and again this search can

be parameterised by a single parameter λ:

K(λ) = K(0) + λΛ. (7.78)

We wish to project out from Λ that component which is parallel to ∆. The modified search

direction Λ̃ can be written as

Λ̃ = Λ− ω∆. (7.79)

The variation of the electron number along this modified direction is

N(λ) = N(0) + 2λTr(ΛS)− 2ωλTr(∆S) (7.80)

and we wish the coefficient of the linear term in λ to vanish, which defines the required

value of ω to be

ω =
Tr(ΛS)

Tr(∆S)
=

Tr(ΛS)

2Tr(S2)
. (7.81)

Since the electron number depends linearly upon the density-kernel, after this projection,
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the electron number is constant along the modified search direction, and the electron

number need not be corrected after a trial step is taken.

Support function variation

The electron number gradient with respect to the support functions is given in section 7.3

and denoted by {ζα(r)}:
δN

δφα(r)
= 2Kαβφβ(r) = ζα(r). (7.82)

The support function variation is again parameterised by the parameter λ:

φα(r;λ) = φα(r;λ = 0) + λζα(r) (7.83)

and this results in the following quadratic variation of the overlap matrix

Sαβ(λ) = Sαβ(0) + λ〈φα(λ = 0)|ζβ〉+ λ〈ζα|φβ(λ = 0)〉+ λ2〈ζα|ζβ〉
= Sαβ(0) + λS ′αβ + λ2S ′′αβ (7.84)

which defines the matrices S ′ and S ′′. The variation of the electron number is therefore

also quadratic

N(λ) = N(0) + 2λTr(KS ′) + 2λ2Tr(KS ′′) (7.85)

and the roots of this expression can be found to correct the electron number.

We consider a general search direction for the localised functions denoted {ξα(r)} and

modify this search direction to obtain the direction which maintains the electron number

to first order:

ξ̃α(r) = ξα(r)− ωζα(r). (7.86)

Now varying the localised functions according to

φα(r;λ) = φα(r;λ = 0) + λξ̃α(r) (7.87)

results in the following variation of the electron number:

N(λ) = N(0) + 2λTr(KS̃ ′)− 2λωTr(KS ′) +O(λ2) (7.88)

where S̃ ′αβ = 〈φα(λ = 0)|ξβ〉 + λ〈ξα|φβ(λ = 0)〉. Thus to maintain the electron number to

first order, we choose

ω =
Tr(KS̃ ′)
Tr(KS ′)

. (7.89)
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In this case, the electron number is not constant along the search direction, but will still

vary quadratically, so that it is necessary to correct the density-matrix before evaluating

the total functional.

7.7.3 General outline of the scheme

The initialisation of the density-matrix is described in chapter 8. The functional min-

imisation consists of two nested loops. The inner loop consists of the minimisation with

respect to the density-kernel, while keeping the support functions constant. As shown in

section 7.4, this corresponds to making the density-matrix commute with the Hamiltonian

in the representation of the current support functions. The outer loop consists of the sup-

port function minimisations, which in section 7.4 were shown to correspond to solving the

Kohn-Sham equations. In general, we find that two or three cycles of the inner loop for

each cycle of the outer loop suffice, and this is demonstrated in figure 7.1 in which three

cycles of the inner loop appears to give the best performance to computational cost ratio.
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Figure 7.1: Rate of convergence for different numbers of inner cycles. In the legend,
DMn corresponds to n cycles of the inner loop for each iteration of the outer loop (hori-
zontal axis).
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The conjugate gradients scheme is used to determine the search directions from the

gradients, and these gradients are then projected perpendicular to the electron number

gradient as described in section 7.7.2. We approximate the total functional by a parabola

along the search direction, using the initial value of the functional, the first derivative of

the functional at the initial position (which is simply the scalar product of the steepest

descent and search directions) and the value of the functional at some trial position. The

value of the functional at the predicted minimum is then evaluated. If this value deviates

significantly from the value predicted by the quadratic fit, a cubic fit is constructed using

this new value of the functional. In general, this is only necessary for the first few steps,

and the parabolic fit is very good. In the case of the support function variation, the support

functions are altered to give the correct number of electrons before each evaluation of the

functional. The conjugate gradients procedure is reset after a finite number of steps, and

this is illustrated in figure 7.2 for the inner and outer loops. In both cases, we see that

there is little advantage in conjugating more than eight gradients before resetting.
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Figure 7.2: Performance of the conjugate gradients algorithm in the density-kernel
variation (left) and the support function variation (right).

Once the functional has been minimised, the correction to the total energy is calculated.

The whole calculation is generally repeated for a few different values of α to ensure that

the corrected energy has indeed converged.



Chapter 8

Relating linear-scaling and

plane-wave methods

For a number of reasons, it is useful to be able to convert the Kohn-Sham orbitals generated

by traditional plane-wave codes into a set of support functions and a density-kernel which

can be used as input in a linear-scaling code. One such reason is the need for careful

density-matrix initialisation, discussed in section 8.3. For analysis it is also useful to be

able to perform the reverse operation of extracting the Kohn-Sham orbitals and occupation

numbers from the density-matrix. In this chapter we describe methods for performing both

of these operations.

8.1 Wave-functions from density-matrices

In the linear-scaling method, we have a density-matrix represented in the form

ρ(r, r′) = φα(r)K
αβφβ(r

′). (8.1)

First we represent the localised support functions by linear combinations of plane-waves.

For the analytic basis-set described in chapter 5 this is easily accomplished using equation

5.9 which gives the Fourier transform of the basis functions.

Having obtained an expansion for the support functions in a complete basis-set, it is

now possible to orthogonalise the support functions by means of the Löwdin transformation

to the set of orthonormal orbitals {ϕα(r)} given by

|ϕα〉 = |φβ〉S−
1
2

βα . (8.2)

109
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Simultaneously transforming the matrix K into the matrix K̃ by

K̃ = S
1
2KS

1
2 (8.3)

leaves the density-matrix invariant in the sense that

ρ(r, r′) = φα(r)K
αβφβ(r

′) = ϕα(r)K̃αβϕβ(r
′). (8.4)

To obtain the Kohn-Sham orbitals and occupation numbers it is necessary to diagonalise

K̃. If this density-matrix is a ground-state density-matrix, then the density-operator and

Hamiltonian commute so that they have the same diagonal representation, and therefore

diagonalising K̃ is equivalent to diagonalising H̃ = S−
1
2HS−

1
2 . Thus the unitary transfor-

mation U which yields the occupation numbers fi = (U †K̃U)ii (no summation convention)

also yields the Kohn-Sham orbitals |ψi〉 = |ϕα〉Uαi. This information can then be used in a

traditional plane-wave code, and this is the method which was used to check the analytic

results for the kinetic energy and non-local pseudopotential energy in chapter 5. The spa-

tial cut-off of the support regions in real-space leads to algebraically-decaying oscillatory

behaviour for large wave-vectors in reciprocal-space, so that a single basis function needs a

high plane-wave energy cut-off to accurately describe this truncation. However, for support

functions which decay smoothly to zero at the edge of the support region, the decay will be

much faster, and the plane-wave cut-off comparable to the cut-off for the basis functions

themselves.

8.2 Density-matrices from Kohn-Sham orbitals

This method is based upon work on the projection of plane-wave calculations onto atomic

orbitals [166], which has been used to analyse atomic basis-sets [167] and obtain local

atomic properties from the extended Kohn-Sham orbitals [168]. Here we review the

method, for the special case of a Γ-point Brillouin zone sampling.

8.2.1 Projecting plane-wave eigenstates onto support functions

The plane-wave eigenstates are denoted |ψi〉 and the support functions are denoted |φα〉.
The states obtained by projecting the plane-wave eigenstates onto the space spanned by

the support functions are denoted |ξα〉. As in section 4.6 we also introduce the dual states

|φα〉 and |ξα〉 with the properties outlined below.

Sαβ = 〈φα|φβ〉 Σαβ = 〈ξα|ξβ〉 (8.5)
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|φα〉 = |φβ〉S−1
βα |ξα〉 = |ξβ〉Σ−1

βα (8.6)

〈φα|φβ〉 = 〈φα|φβ〉 = δβα 〈ξα|ξβ〉 = 〈ξα|ξβ〉 = δβα (8.7)

The projection operator onto the subspace spanned by the support functions is defined by

P̂ = |φα〉〈φα| = |φα〉S−1
αβ 〈φβ|. (8.8)

A spilling parameter S can be defined to measure how much the subspace spanned by

the plane-wave eigenstates falls outside the subspace spanned by the support functions.

Minimising this quantity is one method of optimising the choice of support functions, and

is described for the case of the spherical-wave basis (chapter 5) in section 8.2.3.

S =
1

Nb

〈ψi|(1− P̂ )|ψi〉 (8.9)

where Nb is the number of bands (labelled i) considered. The density-operator is then

defined by

ρ̂ =
occ∑
α

|ξα〉〈ξα| (8.10)

where the sum is taken over occupied bands only. Substitution of the results given above

then yields the following expression for the density-kernel:

Kαβ = 〈φα|ρ̂|φβ〉 =
occ∑

ij

S−1
αλ 〈φλ|ψi〉Σ−1

ij 〈ψj|φµ〉S−1
µβ . (8.11)

Defining the rectangular matrix L as

Lλi = 〈φλ|ψi〉 (8.12)

we give an expression for the matrix Σ in terms of L and S:

Σαβ = 〈ξα|ξβ〉 = 〈ψα|φκ〉S−1
κλ 〈φλ|φµ〉S−1

µν 〈φν |ψβ〉 = L†ακS
−1
κλ SλµS

−1
µν Sνβ = (L†S−1L)αβ.

(8.13)

We can thus minimise the spilling parameter S to optimise our choice of support func-

tions, and then calculate K to obtain all of the information required to start a linear-scaling

calculation.
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8.2.2 Obtaining auxiliary matrices

In the case when the density-kernel K is expanded in terms of an auxiliary matrix T e.g.

in order to construct a positive semi-definite density-matrix, it is necessary to be able to

calculate the auxiliary matrix T which corresponds to a given density-kernel K by

K = TT †. (8.14)

This can be achieved by minimising the function I(T ) given by

I(T ) = Tr
[
(K − TT †)2

]
(8.15)

whose derivative with respect to T is

∂I(T )

∂Tαβ
= −4

[
T †(K − TT †)

]
βα
. (8.16)

This derivative vanishes at the minimum, and so we find that the matrix T which minimises

I(T ) is the desired auxiliary matrix (the solution T = 0 corresponds to a local maximum).

We therefore choose to minimise I(T ) by the conjugate gradients method to obtain the

auxiliary matrix.

8.2.3 Optimising the support functions

As mentioned above, we can optimise our choice of support functions by minimising the

spilling parameter S. We describe this process here when the support functions are them-

selves described in terms of a localised basis:

|φα〉 =
∑

n`m

cn`m(α) |χα,n`m〉. (8.17)

The spilling parameter can be written in terms of the matrices L and S by:

S =
1

Nb

〈ψi|(1− P̂ )|ψi〉 = 1− 1

Nb

〈ψi|φα〉〈φα|ψi〉

= 1− 1

Nb

L†iαS
−1
αβLβi = 1− 1

Nb

Tr[L†S−1L] (8.18)

and we wish to obtain the gradients of S with respect to the expansion coefficients {cn`m(α) }.

∂S
∂cn`m(α)

= − 1

Nb


 ∂L†ij
∂cn`m(α)

S−1
jk Lki + L†ij

∂S−1
jk

∂cn`m(α)

Lki + L†ijS
−1
jk

∂Lki
∂cn`m(α)


 . (8.19)
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We obtain the derivative of the inverse matrix by differentiating S−1S = 1 i.e.

∂(S−1S)αβ
∂x

=
∂S−1

αγ

∂x
Sγβ + S−1

αγ

∂Sγβ
∂x

= 0 (8.20)

which can be rearranged to give

∂S−1
αβ

∂x
= −S−1

αγ

∂Sγδ
∂x

S−1
δβ . (8.21)

Therefore (no summation over α)

∂S
∂cn`m(α)

= − 1

Nb

[
〈ψi|χα,n`m〉S−1

αkLki − L†ijS
−1
jβ (δβα〈χα,n`m|φγ〉+ 〈φβ|χα,n`m〉δβγ)S−1

γk Lki

+L†ijS
−1
jα 〈χα,n`m|ψi〉

]

= − 2

Nb

Re
[
L†αβS

−1
βγ 〈χγ,n`m|φδ〉S−1

δε Lεα − 〈ψα|χβ,n`m〉S−1
βγ Lγα

]
. (8.22)

In the case of the set of basis functions introduced in chapter 5, the overlap between plane-

wave eigenstates and localised basis functions, e.g. 〈ψα|χβ,n`m〉, can be calculated using the

expression for the basis function Fourier transform (5.9).

We can use these gradients to minimise the spilling parameter (by the conjugate gra-

dients method) to obtain the set of optimal coefficients {cn`m(α) } which define the set of

support functions which best span the space of the occupied plane-wave orbitals. The final

minimum spilling parameter value also gives an estimate of the quality of the basis-set

being used.

8.3 Density-matrix initialisation

Finally we discuss the subject of constructing an initial density-matrix for our calculations,

which is related to the other work in this chapter. Although any linear-scaling method will

obviously be more efficient than a traditional method for a sufficiently large system, the

cross-over (i.e. the system-size at which the linear-scaling method beats the traditional

method) may be very large. If it is larger than the largest system which can currently

be simulated by traditional methods, then there is obviously little practical use for such

a method. The methods described in this dissertation are not that inefficient, but neither

is the cross-over sufficiently small that some advantage cannot be obtained by using some

physical insight to assist the calculation e.g. by imposing appropriate symmetries (although

we must take care not to impose symmetries which subsequently prevent the method from

reaching the ground-state).
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For example, consider a vacancy in an otherwise perfect crystal. Running a traditional

calculation on the bulk crystal would allow us, using the methods in section 8.2, to obtain

the density-matrix elements for the bulk crystal which could be used to initialise the

density-matrix for a simulation of the large system with the vacancy. This would avoid

wasting computational effort converging the density-matrix from a random position when

the general form can be guessed from the bulk case.

A second example is that of a molecule interacting with a solid surface. In this case,

the density-matrix for molecule and surface could be converged separately to obtain an

estimate for the complete system. Obviously this method will be more successful the more

weakly bound the molecule is to the surface.

The transferability of localised orbitals between closely-related systems has been studied

in hydrocarbon chains [169] and methods have also been developed to calculate generalised

Wannier functions [170,171] which may also be transferred between systems [172].

One important consideration is that of local charge neutrality, often used as an approx-

imation to self-consistency in non-self-consistent tight-binding calculations [173]. Because

the density-matrix is truncated in real-space, long-wavelength fluctuations in the electronic

density are suppressed. This has the advantage that it prevents “charge-sloshing” instabil-

ities, so problematic in early traditional plane-wave methods on large systems. However, if

the system is not initially charge neutral locally, it takes a very large number of iterations

to transfer charge across the system, and this results in very poor convergence. We thus

need to at least consider initialising our density-matrix to correspond to isolated atoms

brought together, which are then allowed to interact and form bonds etc. This is simply

achieved using the projection method described here and leads to a great improvement in

performance.



Chapter 9

Results and discussion

In this chapter we present results obtained using the penalty functional method applied to

bulk crystalline silicon. We show how the energy converges as the two spatial cut-offs; the

support region radius and density-kernel cut-off, are increased and in particular that the

estimate of the energy is variational with respect to these parameters. We also consider

the difference in convergence of absolute energies and energy differences by calculating the

energy-volume curve and comparing with the results obtained from the castep plane-

wave code [82] and from experiment. Finally we consider the scaling of the method with

system-size (confirming that it is indeed linear) and the scaling with support region radius

and density-kernel cut-off.

9.1 Bulk crystalline silicon

Calculations were performed for a cubic simulation cell containing 216 silicon atoms and

using pseudopotentials generated according to the method of Troullier and Martins [74].

The kinetic energy cut-off for the basis-set was set at 200 eV and the FFT grid contained

72 × 72 × 72 points. The basis-set contained spherical-waves with angular momentum

components up to ` = 2, and the support regions were chosen to be centred on the bonds,

with one support function per region, so that no unoccupied bands were included in this

calculation. The Brillouin zone was sampled using only the Γ-point. A value of 100 eV

was used for the penalty functional prefactor α.

9.1.1 Convergence with density-matrix cut-off

In figure 9.1 we plot the total energy per atom against the support region radius rreg for a

density-kernel cut-off rK of 4.0 Å. In figure 9.2 we plot the total energy per atom against

the density-kernel cut-off rK for a support region radius rreg of 3.1 Å. In both cases, the
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Figure 9.1: Convergence of total energy with respect to support region radius.
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Figure 9.2: Convergence of total energy with respect to density-kernel cut-off.
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energy converges to its limiting value from above, as expected, since the total energy is

variational with respect to the density-matrix cut-off.

These results agree roughly with the calculations of Hernández et al. [127]. In their

case, they used atom-centred support regions and included as many unoccupied bands as

occupied bands, so that the convergence with respect to density-matrix cut-off should be

more rapid in their case. They also used a local pseudopotential, which reduces the range

of the Hamiltonian. Our calculations suggest a combined density-matrix cut-off of the

order of 7.0 Å to obtain the same accuracy as they obtained with a cut-off of about 6.0

Å. We note that the band gap of silicon is relatively small (particularly within the LDA)

so that the density-matrix decay is therefore slow. This makes silicon a difficult test case,

and we can be confident that if we obtain reasonable results in this system, we shall be

successful in others.

9.1.2 Electronic density

Since the minimising density-matrix is only approximately idempotent, the electronic den-

sity derived from it is not the exact ground-state density. However, in figure 9.3 we plot

the electronic density in the (110) plane (containing the atoms highlighted in silver in fig-

ure 9.4) obtained from the minimising density-matrix with rreg = 3.1 Å and rK = 6.0 Å,

and observe that it is still qualitatively correct. Since electronic densities are used primar-

ily for visualisation purposes, rather than for quantitative analysis, the information most

commonly required can still be obtained from the minimising density-matrix.

In figure 9.5 we plot the electronic density obtained using the castep plane-wave code

using the same pseudopotential and energy cut-off, and equivalent Brillouin zone sampling

(a 3× 3× 3 Monkhorst-Pack mesh for an 8-atom unit cell). We observe that there is less

density concentrated in the bonds for the castep density compared with the linear-scaling

density, and this is to be expected since in the linear-scaling calculation, the lowest energy

(i.e. most bonding) orbital is over-occupied and the highest energy (i.e. least bonding)

orbital is under-occupied. In figure 9.6 we plot the difference obtained by subtracting the

castep density from the linear-scaling density and confirm this observation.

9.1.3 Predictions of physical properties

The converged value of the total energy agrees with the castep value (again with equiva-

lent energy cut-off, Brillouin zone sampling and pseudopotential) only within 3%. However,

if energy differences are caused by density-matrix variations which are short-ranged, then

they will be much better converged than absolute energies. In figure 9.7 we plot the total

energy against volume V . For a lattice parameter a = 5.430 Å, which was used for the
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calculations in section 9.1.1, we used values of rreg = 3.10 Å, rK = 6.00 Å and an energy

cut-off of 200 eV. As the volume V was changed, the support region radius rreg, density-

kernel cut-off rK and energy cut-off Ecut were changed proportionally. The parameters

used are listed in table 9.1.

a / Å V / Å3 rreg / Å rK / Å Ecut / eV

5.31 149.72 3.03 5.87 209
5.35 153.13 3.05 5.91 206
5.39 156.59 3.08 5.96 203
5.43 160.10 3.10 6.00 200
5.47 163.67 3.12 6.04 197
5.51 167.28 3.15 6.09 194

Table 9.1: Parameters used to calculate energy-volume curve.

Fitting the data to the Birch-Murnaghan equation of state allows values for the equi-

librium volume V and bulk modulus B to be calculated, which are compared with the

results obtained from a castep calculation using the same pseudopotential and to experi-

ment [174] in table 9.2. Generally we expect to obtain lattice parameters to within 2% and

bulk moduli to within 10%. The bulk modulus is very sensitive to the data, so that whereas

the prediction of the lattice parameter is in excellent agreement with both the castep and

experimental values, the value of the bulk modulus predicted by the linear-scaling method

is about 8% too large. These results indicate that the linear-scaling calculation is not quite

fully converged with the set of parameters used, but are very encouraging overall.

Calculation Linear-scaling castep Experiment

a / Å 5.423 5.390 5.430

V / Å3 159.47 156.56 160.10
B / GPa 108.8 101.7 100.0

Table 9.2: Comparison of calculated and experimental data for silicon.

9.2 Scaling

In this section we consider the scaling of the method, firstly with respect to the system-

size, and secondly with respect to the localisation region radius rreg and the density-kernel

cut-off rK .
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9.2.1 System-size scaling

As mentioned in chapter 7, there are several steps in the calculation which are not strictly

O(N), such as the calculation of the structure factor, the calculation of the ion-ion inter-

action energy (by Ewald’s method [175–178]) and possibly the calculation of the energy

correction. All of these operations need only be performed once for each ionic configura-

tion, and so do not contribute significantly to the total computational effort. However,

there are a number of FFTs within the method which require an effort which scales as

O(N logmN). To verify that these operations do not spoil the linear-scaling of the rest of

the method, we plot the CPU time required per iteration in figure 9.8 and see that it is

indeed linear with respect to system-size as required.

9.2.2 Scaling with density-matrix cut-off

We now consider the scaling with respect to the density-matrix cut-off rcut which in practice

is defined by two parameters; the support region radius rreg and the density-kernel cut-off

rK . Two spherical support regions will overlap if the sum of their radii exceeds the distance

between their centres. We assume that all support regions have the same radius rreg, and

thus the number of support regions which overlap a particular region equals the number

of region centres lying within a sphere of radius 2rreg. For bulk solids this number will

be proportional to the volume of the sphere i.e. proportional to r3
reg. Table 9.3 allows the

precise number of overlaps to be determined for the case of atom-centred support regions

in several common crystal structures. In the sparse overlap matrix, the number of non-zero

elements in each row or column is therefore also proportional to r3
reg. For sparse matrix

multiplication, the computational effort scales quadratically with the number of non-zero

elements per row (and linearly with the rank) so that we expect the method to scale with

the sixth power of the support region radius i.e. tcomp ∝ r6
reg. This is often referred to as

quadratic scaling with respect to the support region size (i.e. volume).

The argument follows in precisely the same manner for the density-kernel cut-off, re-

placing 2rreg by rK . In general, as observed in section 9.1.1, rK ≈ 2rreg when the energy

is converged with respect to both parameters, so that the overlap matrix and density-

kernel will generally share similar sparse structure. In bulk crystals, we thus expect the

computational effort to scale with the sixth power of the density-matrix cut-off rcut i.e.

tcomp ∝ r6
cut.

In certain systems, however, this scaling may be different. For example, in long linear

molecules e.g. hydrocarbon chains, which have an essentially one-dimensional structure,

each support region will overlap a number of others which scales only linearly with the

radius. In this case tcomp ∝ r2
cut, and this suggests that these linear-scaling methods may
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be more suited to studying molecular rather than crystalline systems.
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Figure 9.3: Electronic density of silicon in the (110) plane (units Å−3).
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Figure 9.4: Diamond structure of silicon, highlighting a {110} plane.
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Figure 9.5: Electronic density of silicon in the (110) plane calculated by the castep

code (units Å−3).
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Figure 9.6: Difference between electronic densities of silicon calculated by the linear-
scaling method and castep (units Å−3).
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Figure 9.7: Energy-volume curve for silicon. The line is the best fit to the Birch-
Murnaghan equation of state.
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Figure 9.8: Variation of computational effort with system-size.
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Shell # atoms Radius /a Diamond FCC BCC Simple

1 4 0.43301 •
2 12 0.70711 • •
3 8 0.86603 •
4 12 0.82916 •
5 6 1.00000 • • • •
6 12 1.08972 •
7 24 1.22474 • •
8 16 1.29904 •
9 12 1.41421 • • • •

10 24 1.47902 •
11 24 1.58114 • •
12 12 1.63936 •
13 24 1.65831 •
14 8 1.73205 • • • •
15 24 1.78536 •
16 48 1.87083 • •
17 36 1.92029 •
18 6 2.00000 • • • •
19 12 2.04634 •
20 36 2.12132 • •
21 28 2.16506 •
22 24 2.17945 •
23 24 2.23607 • • • •
24 36 2.27761 •
25 24 2.34521 • •
26 24 2.38485 •
27 24 2.44949 • • • •
28 36 2.48747 •
29 72 2.54951 • •
30 36 2.58602 •
31 32 2.59808 •
32 24 2.68095 • •
33 48 2.73861 •
34 24 2.77263 • •

Table 9.3: Table showing the number of atoms lying within support regions of varying
radii centred on atoms for some common cubic crystal structures.





Chapter 10

Conclusions

10.1 Summary

In this dissertation I have attempted to explain the motivation for performing computa-

tional quantum-mechanical simulations and to describe the major difficulties encountered

when one attempts to do so. The progress made so far by the introduction of density-

functional theory, incorporating a local density approximation for exchange and correla-

tion and the use of pseudopotentials already allows these calculations to be performed on

systems which are of interest to scientists working in a variety of fields today. However, the

scope of these calculations is limited by the unfavourable scaling of computational effort

and resources required. Methods which exhibit optimal scaling, that is scale in the same

way as the complexity of the problem to be solved, offer the prospect of extending the range

of accessible scales much further, and will also take full advantage of future improvements

in computer technology.

The work in this dissertation is based upon the density-matrix formulation of density-

functional theory, which avoids the necessity of dealing directly with the extended wave-

functions (which resulted in the unfavourable cubic scaling) and leads naturally to a linear-

scaling method.

The spherical-wave basis-set proposed in chapter 5 provides a solution to the prob-

lem of representing the density-matrix in real-space while maintaining the accuracy of the

kinetic energy (which is naturally calculated in reciprocal-space) and also efficiently calcu-

lating the action of the non-local pseudopotential. The analytic results derived have been

implemented within the scheme described in chapters 6 and 7.

Secondly, methods to impose the non-linear idempotency constraint by the use of

penalty functionals have been described. The failure of the original proposals by Kohn in

computational implementations are shown to be due to the functional form of the penalty
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functional which must be chosen to obtain a variational principle. An original scheme

has been proposed in which penalty functionals are chosen to be compatible with efficient

minimisation algorithms and to approximately impose the idempotency constraint. The

resulting errors in the total energy are corrected by considering the functional form of the

penalty functional, so that accurate estimates of the true ground-state energy can be made.

Thirdly the relationship between traditional plane-wave methods based upon the Kohn-

Sham wave-functions and density-matrix based schemes are discussed. We show how it is

possible to interchange information about the electronic structure of the system between

these two methods, and in particular apply this to the problem of obtaining initial density-

matrices for use in linear-scaling calculations.

The results in chapters 5 and 6 have all been implemented in a total energy code, which

has been tested on bulk crystalline silicon. The convergence of the energy with respect to

support region radius and density-kernel cut-off has been examined. Predictions of some

physical properties of bulk silicon are then compared with experimental values and results

from the O(N3) castep plane-wave code. Finally, the scaling of the method with system-

size is confirmed to be linear, and the scaling with respect to support region radius and

density-kernel cut-off discussed.

10.2 Further work

Starting from the underlying quantum-mechanical theory, in this dissertation an original

scheme to perform linear-scaling total energy calculations based upon the density-matrix

and using a new basis-set has been outlined and its computational implementation dis-

cussed. The results obtained are very promising, but there is still much work to be done

in developing and optimising the scheme e.g. the occupation number preconditioning out-

lined in section 7.5. One of the most computationally expensive steps is currently the

evaluation of the electronic density on the real-space grid. By choosing to minimise the

non-interacting Kohn-Sham energy non-self-consistently rather than the interacting energy

self-consistently the number of times this evaluation has to be performed can be greatly

reduced. Self-consistency can then be obtained by density mixing [179,180] . The problem

of “charge-sloshing” which can arise in this case in traditional methods appears not to be

present when localised functions are used, and can anyway be eliminated [83,181].

Once an efficient electronic minimisation scheme is in place, the next step is to calculate

ionic forces in order to perform ionic relaxation or even molecular dynamics. First it is

worth noting that there are of O(N) ions in the system, and the computational effort

to calculate the force on each (from the local pseudopotential) is also of O(N) so that

a computational effort of O(N2) is necessary to calculate all the forces. Secondly, the
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typical time-scale of molecular dynamics required by a system of volume V is τ ∝ V
2
3 so

that this introduces an extra factor of O(N
2
3 ) in the computational effort. The Hellmann-

Feynman forces [182,183] resulting from the derivative of the Hamiltonian with respect to

the ionic positions have a contribution from the local pseudopotential (which is calculated

using the reciprocal-space grid) and the non-local pseudopotential (which is calculated by

taking analytic derivatives of the results for the non-local pseudopotential matrix elements).

These forces have in fact been calculated and tested using the spherical-wave basis-set.

However, because the support regions move with the ions, other contributions known as

Pulay forces [184] arise which must be calculated. Since the correction to the energy

derived from the penalty functional can be expressed analytically, it should be possible to

calculate accurate forces which are consistent with the corrected energy.

Given the expected improvement in efficiency of the method when applied to molecular

rather than crystalline systems (section 9.2.2), serious consideration should be given to

converting the code to perform calculations on clusters, rather than using the supercell

approximation. This would have the added advantage of eliminating the O(N2) step to

calculate the structure factor and the calculation of the ion-ion interaction energy (although

still an O(N2) step) would also become much cheaper.

In the long term it is essential that advantage be taken of the natural way in which

linear-scaling methods based in real-space can be separated into simultaneous calculation of

interacting fragments. This property means that the problem lends itself to implementation

on massively parallel computers [185]. Even with the serial code on a single workstation it

has been possible to model 512 silicon atoms, and there exist parallel computers consisting

of a few hundred nodes each with the same power, so that in principle calculations of

100000 atoms are feasible. The development of schemes which will exploit the advantages

of parallel processing is therefore essential to reap the full benefit of linear-scaling methods.





Appendix A

Bessel function identities

In this appendix we list some standard results used in the analysis of chapter 5 [186].

j`+1(x) =
`

x
j`(x)− j′`(x) (A.1)

j`−1(x) =
`+ 1

x
j`(x) + j′`(x) (A.2)

exp[ik · r] = 4π
∞∑

`=0

∑̀

m=−`
i` j`(kr) Ȳ`m(Ωk) Ȳ`m(Ωr) (A.3)

∫ b

a
j`(mx)j`(nx)x

2dx

=
1

m2 − n2

[
x2 {nj`(mx)j`−1(nx)−mj`−1(mx)j`(nx)}

]b
a

(A.4)

∫ b

a
j2
` (mx)x

2dx = 1
2

[
x2

{
xj2

` (mx) + xj2
`−1(mx)

−2`+ 1

m
j`−1(mx)j`(mx)

}]b

a
(A.5)
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Appendix B

Conjugate gradients

In order to find the minimum of some function f(x), it is of course necessary to solve the

equation ∇f(x) = 0, but this is not possible in practice. Rather, ∇f(x) is used as a search

direction in the multi-dimensional parameter-space of vectors x to minimise the function

iteratively. One way to do this is to move along these directions of steepest descent , finding

the minimum along each one and then calculating a new direction from that minimum

until we find the ground-state. The minimum along a certain direction (the line minimum)

is found when the direction along which we are searching becomes perpendicular to the

gradient. Thus if we use this method of steepest descents, consecutive search directions

are always perpendicular, and it is clear that this is inefficient since we are only using the

current steepest descent direction and throwing away all previous knowledge which could

be used to build up a more accurate picture of the functional we are trying to minimise.

In fact, the steepest descents method is only efficient when the minimum is “spherical” i.e.

when the eigenvalues of the Hessian are all of the same order. If this is not the case, then

the method is very slow, and is not guaranteed to converge to the minimum in a finite

number of steps. A particularly bad case is that of the “narrow valley” illustrated in figure

B.1.

By contrast, the method of conjugate gradients [187] takes information from previous

steps into account, but only requires that the previous search direction (rather than all

previous search directions as might be expected) be stored. For a full description see [188].

We consider a general quadratic scalar function of a number of variables, written as a

vector x:

f(x) = 1
2
x · G · x− b · x (B.1)

in which G is a positive definite symmetric matrix (so that the function has a single global

minimum) and b is some constant vector. We denote the line minima (i.e. the points at

which the search direction changes) by the set of points {xr} and the gradients at those

133



134 Linear-scaling methods in ab initio quantum-mechanical calculations

Figure B.1: Steepest descents method – a large number of steps is required to find the
minimum.

points are {gr}
gr = ∇f(xr) = G · xr − b. (B.2)

We label the search directions {pr}. In the steepest descents method, pr = −gr and we

move along this direction an amount described by the parameter αr until at the end (at

xr+1) the search direction is perpendicular to the gradient gr+1:

xr+1 = xr + αrpr = xr − αrgr (B.3)

gr+1 · pr = −gr+1 · gr = 0 (B.4)

which proves that consecutive search directions are always mutually perpendicular in this

method. Now, for f(x) defined by equation B.1 we have

gr − gs = G · (xr − xs). (B.5)

The minimum of f(x) along the direction pr is at xr+1 = xr + αrpr and is still given by

condition (B.4), so that αr is given by

αr = − pr · gr
pr · G · pr (B.6)

and using (B.5) with s = r + 1 we obtain

gr+1 = gr + αrG · pr. (B.7)

A set of search directions {pr} are said to be conjugate directions (with respect to G)
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if they satisfy the condition

pr · G · ps = 0, r 6= s. (B.8)

These directions are linearly independent which can be proved by reductio ad absurdum:

assume the directions are linearly dependent i.e. there is a set of numbers {λi}, not all

vanishing, for which
∑
i λipi = 0. But operating on both sides by G and taking the scalar

product with pj implies λjpj · G · pj = 0 for all j by (B.8), and pj · G · pj 6= 0 since G is

positive definite, and so we obtain the contradiction that λj = 0 for all j.

We can construct a set of these directions from a set of linearly dependent directions

{ur} using a procedure analogous to Gram-Schmidt orthogonalisation i.e.

p1 = u1

pr+1 = ur+1 +
r∑

i=1

β
(r)
i pi (B.9)

where

β
(r)
i = −ur+1 · G · pi

pi · G · pi (B.10)

which we prove by induction. Assuming that we have r conjugate directions obeying (B.8)

and construct pr+1 according to (B.9) then

ps · G · pr+1 = ps · G · ur+1 −
r∑

i=1

ur+1 · G · pi
pi · G · pi ps · G · pi

= ps · G · ur+1 − ur+1 · G · ps
ps · G · ps ps · G · ps = 0 (B.11)

for s < r + 1, since G is symmetric. Now p1 and p2 are trivially verified to be conjugate

directions and so the proof is complete.

It follows that any other vector may be written as a combination of these conjugate

directions, in particular the vector from the initial point x1 to the minimum x∗ in an

n-dimensional space is

x∗ − x1 =
n∑

r=1

αrpr

αr =
pr · G · (x∗ − x1)

pr · G · pr
= − pr · g1

pr · G · pr (B.12)

from equation B.2 and the fact that the gradient vanishes at the minimum i.e. g∗ =

G ·x∗−b = 0. We note therefore that x∗ can be reached in k ≤ n steps from x1 where the
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r-th step is given by

xr+1 = xr + αrpr (B.13)

with αr given by (B.12). Applying (B.5) to

xr = x1 +
r−1∑

i=1

αipi, (B.14)

we obtain

gr = g1 +
r−1∑

i=1

αiG · pi. (B.15)

When the scalar product with pr is taken this gives pr · g1 = pr · gr. The expressions

(B.6) and (B.12) are identical and so the steps from x1 to x∗ proceed via points which are

minima along each search direction. Taking the scalar product of (B.15) with ps (s < r)

instead we obtain

ps · gr = ps · g1 + αsps · G · ps = 0 (B.16)

from equation B.12. Thus gr is perpendicular to all previous search directions so that

each point xr+1 is actually a minimum with respect to the whole subspace spanned by

{p1,p2 . . .pr} i.e. we can consider each step as removing one dimension of the space from

the problem, so that the minimum of a quadratic function must always be found in a

number of steps less than or equal to the dimensionality of the space.

The method of conjugate gradients uses such a set of conjugate directions {pr} based

upon the steepest descent directions {−gr} at successive points. For this to be valid, we

must show that the gradients are linearly independent. They are in fact orthogonal, which

can be proved by induction. Starting with p1 = −g1 then from the minimum condition

(B.4) we have g2 · p1 = −g2 · g1 = 0 so that the first two gradients are orthogonal. Then

assuming that we have a set of r orthogonal gradients, and conjugate directions obtained

from them by (B.9). Using (B.16) we have gr+1 ·ps = 0 for s ≤ r. But ps is given by (B.9)

as

ps = −gs +
s−1∑

i=1

β
(s−1)
i pi (B.17)

so that

gr+1 · gs = −gr+1 · ps +
s−1∑

i=1

β
(s−1)
i gr+1 · pi = 0 (B.18)

and gr+1 is orthogonal to all the previous gradients and the proof is complete: the gradients

are all mutually orthogonal and thus linearly independent so that they can be used to

construct conjugate directions: the conjugate gradients.
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In this case, equation B.9 becomes

β
(r)
i =

gr+1 · G · pi
pi · G · pi (B.19)

which using (B.7) can be rewritten

(pi · G · pi)β(r)
i =

1

αi
gr+1 · (gi+1 − gi) (B.20)

so that by the orthogonality of the gradients, β
(r)
i = 0 for i < r and the only non-vanishing

coefficient is β(r)
r :

β(r)
r = −gr+1 · gr+1

pr · gr (B.21)

=
gr+1 · gr+1

gr · gr (B.22)

by (B.16) and (B.9).

Thus the method involves starting by searching along the direction of steepest descent,

finding the minimum point along each direction and then calculating a new search direction

from the new gradient and previous search direction pr+1 = −gr+1 + βrpr where βr = β(r)
r

is calculated from either of the expressions in (B.21, B.22) (which will differ for a general

function) or from

βr =
gr+1 · (gr+1 − gr)

pr · (gr+1 − gr)
(B.23)

as suggested by Polak [189].

The minimum of the two-dimensional narrow valley, so problematic for the steepest

descents method, is now found in just two steps by the conjugate gradients method (figure

B.2).

Figure B.2: Conjugate gradients method – only two steps are required to find the
minimum.
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Rend. Accad. Naz. Lincei 6, 602 (1927).



Bibliography 141

[25] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms

und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys.

48, 73 (1928).

[26] E. Teller. On the stability of molecules in the Thomas-Fermi theory. Rev. Mod.

Phys. 34, 627 (1962).

[27] Elliott H. Lieb. Thomas-Fermi and related theories of atoms and molecules. Rev.

Mod. Phys. 53 (4), 603 (October 1981).

[28] Lin-Wang Wang and Michael P. Teter. Kinetic-energy functional of the electron

density. Phys. Rev. B 45 (23), 13196 (June 1992).

[29] M. Pearson, E. Smargiassi and P. A. Madden. Ab initio molecular dynamics with an

orbital-free density functional. J. Phys.: Condens. Matter 5, 3221 (1993).

[30] F. Perrot. Hydrogen-hydrogen interaction in an electron gas. J. Phys.: Condens.

Matter 6, 431 (1994).

[31] Enrico Smargiassi and Paul A. Madden. Orbital-free kinetic-energy functionals for

first-principles molecular dynamics. Phys. Rev. B 49 (8), 5220 (February 1994).

[32] Michael Foley and Paul A. Madden. Further orbital-free kinetic-energy functionals

for ab initio molecular dynamics. Phys. Rev. B 53 (16), 10589 (April 1996).

[33] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correla-

tion effects. Phys. Rev. 140 (4A), 1133 (November 1965).

[34] John P. Perdew and Mel Levy. Extrema of the density functional for the energy:

Excited states from the ground-state theory. Phys. Rev. B 31 (10), 6264 (May

1985).

[35] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic

method. Phys. Rev. Lett. 45 (7), 566 (August 1980).

[36] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional ap-

proximations for many-electron systems. Phys. Rev. B 23 (10), 5048 (May 1981).

[37] R. O. Jones and O. Gunnarsson. The density functional formalism, its applications

and prospects. Rev. Mod. Phys. 61 (3), 689 (July 1989).

[38] J. Harris and R. O. Jones. The surface energy of a bounded electron gas. J. Phys. F

4, 1170 (August 1974).



142 Linear-scaling methods in ab initio quantum-mechanical calculations

[39] D. C. Langreth and J. P. Perdew. The exchange-correlation energy of a metallic

surface. Solid State Comm. 17, 1425 (1975).

[40] J. Harris. Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A 29 (4),

1648 (April 1984).

[41] E. K. U. Gross, E. Runge and O. Heinonen. Many-Particle Theory , chap. 16, p.

179ff. (Adam Hilger, New York, 1991), English edn.

[42] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms, molecules,

and solids by the spin-density-functional formalism. Phys. Rev. B 13 (10), 4274

(May 1976).

[43] David C. Langreth and M. J. Mehl. Easily implementable nonlocal exchange-

correlation energy functional. Phys. Rev. Lett. 47 (6), 446 (August 1981).

[44] David C. Langreth and M. J. Mehl. Beyond the local-density approximation in

calculations of ground-state electronic properties. Phys. Rev. B 28 (4), 1809 (August

1983).

[45] Neil W. Ashcroft and N. David Mermin. Solid State Physics , chap. 8, p. 132ff.

(Saunders College, Philadelphia, 1976), International edn.

[46] J. L. Lebowitz and Elliott H. Lieb. Existence of thermodynamics for real matter

with Coulomb forces. Phys. Rev. Lett. 22 (13), 631 (March 1969).

[47] L. P. Bouckaert, R. Smoluchowski and E. Wigner. Theory of Brillouin zones and

symmetry properties of wave functions in crystals. Phys. Rev. 50, 58 (July 1936).

[48] A. Baldereschi. Mean-value point in the Brillouin zone. Phys. Rev. B 7 (12), 5212

(June 1973).

[49] D. J. Chadi and Marvin L. Cohen. Special points in the Brillouin zone. Phys. Rev.

B 8 (12), 5747 (December 1973).

[50] Hendrik J. Monkhorst and James D. Pack. Special points for Brillouin-zone integra-

tions. Phys. Rev. B 13 (12), 5188 (June 1976).

[51] D. J. Chadi. Special points for Brillouin-zone integrations. Phys. Rev. B 16 (4),

1746 (August 1977).

[52] R. A. Evarestov and V. P. Smirnov. Special points of the Brillouin zone and their

use in the solid state theory. Phys. Stat. Sol. 119, 9 (1983).



Bibliography 143

[53] Sverre Froyen. Brillouin-zone integration by Fourier quadrature: Special points for

superlattice and supercell calculations. Phys. Rev. B 39 (5), 3168 (February 1989).

[54] I. J. Robertson and M. C. Payne. k-point sampling and the k · p method in pseu-

dopotential total energy calculations. J. Phys.: Condens. Matter 2, 9837 (1990).

[55] I. J. Robertson and M. C. Payne. The k · p method in pseudopotential total energy

calculations: error reduction and absolute energies. J. Phys.: Condens. Matter 3,

8841 (1991).

[56] James C. Phillips. Energy-band interpolation scheme based on a pseudopotential.

Phys. Rev. 112 (3), 685 (November 1958).

[57] James C. Phillips and Leonard Kleinman. New method for calculating wave functions

in crystals and molecules. Phys. Rev. 116 (2), 287 (October 1959).

[58] Volker Heine. The Pseudopotential Concept , vol. 24 of Solid State Physics , p. 1

(Academic Press, New York, 1970).

[59] J. Ihm. Total energy calculations in solid-state physics. Rep. Prog. Phys. 51 (1), 105

(1988).

[60] W. E. Pickett. Pseudopotential methods in condensed matter applications. Comp.

Phys. Rep. 9 (3), 115 (1989).

[61] Conyers Herring. A new method for calculating wave functions in crystals. Phys.

Rev. 57, 1169 (June 1940).

[62] Leonard I. Schiff. Quantum Mechanics , chap. 5, p. 116ff. (McGraw-Hill, Singapore,

1968), 3rd edn.

[63] Michael Teter. Additional condition for transferability in pseudopotentials. Phys.

Rev. B 48 (8), 5031 (August 1993).

[64] A. Filippetti, David Vanderbilt, W. Zhong, Yong Cai and G. B. Bachelet. Chemical

hardness, linear response, and pseudopotential transferability. Phys. Rev. B 52 (16),

11793 (October 1995).

[65] Antonio Redondo, William A. Goddard III and T. C. McGill. Ab initio effective

potentials for silicon. Phys. Rev. B 15 (10), 5038 (May 1977).
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